15,863 research outputs found

    Searching for annihilation radiation from SN 1006 with SPI on INTEGRAL

    Get PDF
    Historical Type Ia supernovae are a leading candidate for the source of positrons observed through their diffuse annihilation emission in the Galaxy. However, search for annihilation emission from individual Type Ia supernovae has not been possible before the improved sensitivity of \integral. The total 511 keV annihilation flux from individual SNe Ia, as well as their contribution to the overall diffuse emission, depends critically on the escape fraction of positrons produced in 56^{56}Co decays. Late optical light curves suggest that this fraction may be as high as 5%. We searched for positron annihilation radiation from the historical Type Ia supernova SN 1006 using the SPI instrument on \integral. We did not detect significant 511 keV line emission, with a 3σ\sigma flux upper limit of 0.59 x 104^{-4} ergs cm^-2 s^-1 for \wsim 1 Msec exposure time, assuming a FWHM of 2.5 keV. This upper limit corresponds to a 7.5% escape fraction, 50% higher than the expected 5% escape scenario, and rules out the possibility that Type Ia supernovae produce all of the positrons in the Galaxy (~ 12% escape fraction), if the mean positron lifetime is less than 105^{5} years. Future observations with \integral will provide stronger limits on the escape fraction of positrons, the mean positron lifetime, and the contribution of Type Ia supernovae to the overall positron content of the Galaxy.Comment: 3 pages, 2 figures, accepted for publication in ApJ

    Quantum steering ellipsoids, extremal physical states and monogamy

    Get PDF
    A Corrigendum for this article has been published in 2015 New J. Phys. 17 019501Any two-qubit state can be faithfully represented by a steering ellipsoid inside the Bloch sphere, but not every ellipsoid inside the Bloch sphere corresponds to a two-qubit state. We give necessary and sufficient conditions for when the geometric data describe a physical state and investigate maximal volume ellipsoids lying on the physical-unphysical boundary. We derive monogamy relations for steering that are strictly stronger than the Coffman-Kundu- Wootters (CKW) inequality for monogamy of concurrence. The CKW result is thus found to follow from the simple perspective of steering ellipsoid geometry. Remarkably, we can also use steering ellipsoids to derive non-trivial results in classical Euclidean geometry, extending Eulers inequality for the circumradius and inradius of a triangle.The EPSRC and the ARC Centre of Excellence grant no. CE110001027. DJ is funded by the Royal Society. TR would like to thank the Leverhulme Trust. SJ acknowledges EPSRC grant EP/ K022512/1

    Horizontal-axis tidal turbine blade loading for multi-frequency oscillatory motion

    Get PDF
    This paper presents results from an experimental study which analysed the hydrodynamic response of the out-of-plane blade root bending moment for a horizontal-axis turbine exposed to multi-frequency oscillatory motion. Estimates of the amplitude and phase agree well with those for single frequency oscillatory motion, which suggests that a model based on the principles of linear superposition is applicable. When minor flow separation is experienced, linear superposition is likely to offer conservative estimates. The findings are likely to be of interest to designers of turbines deployed in tidal streams, rivers or canals, and who are seeking low computational approaches for assessing the dynamic blade loads

    On giant piezoresistance effects in silicon nanowires and microwires

    Full text link
    The giant piezoresistance (PZR) previously reported in silicon nanowires is experimentally investigated in a large number of surface depleted silicon nano- and micro-structures. The resistance is shown to vary strongly with time due to electron and hole trapping at the sample surfaces. Importantly, this time varying resistance manifests itself as an apparent giant PZR identical to that reported elsewhere. By modulating the applied stress in time, the true PZR of the structures is found to be comparable with that of bulk silicon
    corecore