19,861 research outputs found
Statistical Thermodynamics of General Minimal Diffusion Processes: Constuction, Invariant Density, Reversibility and Entropy Production
The solution to nonlinear Fokker-Planck equation is constructed in terms of
the minimal Markov semigroup generated by the equation. The semigroup is
obtained by a purely functional analytical method via Hille-Yosida theorem. The
existence of the positive invariant measure with density is established and a
weak form of Foguel alternative proven. We show the equivalence among
self-adjoint of the elliptic operator, time-reversibility, and zero entropy
production rate of the stationary diffusion process. A thermodynamic theory for
diffusion processes emerges.Comment: 23 page
Three-dimensional topological insulators in the octahedron-decorated cubic lattice
We investigate a tight-binding model of the octahedron-decorated cubic
lattice with spin-orbit coupling. We calculate the band structure of the
lattice and evaluate the Z_2 topological indices. According to the Z_2
topological indices and the band structure, we present the phase diagrams of
the lattice with different filling fractions. We find that the and
strong topological insulators occur in some range of parameters at
1/6, 1/2 and 2/3 filling fractions. Additionally, the weak
topological insulator is found at 1/6 and 2/3 filing fractions. We analyze and
discuss the characteristics of these topological insulators and their surfaces
states
Multiscale examination of strain effects in Nd-Fe-B permanent magnets
We have performed a combined first-principles and micromagnetic study on the
strain effects in Nd-Fe-B magnets. First-principles calculations on Nd2Fe14B
reveal that the magnetocrystalline anisotropy (K) is insensitive to the
deformation along c axis and the ab in-plane shrinkage is responsible for the K
reduction. The predicted K is more sensitive to the lattice deformation than
what the previous phenomenological model suggests. The biaxial and triaxial
stress states have a greater impact on K. Negative K occurs in a much wider
strain range in the ab biaxial stress state. Micromagnetic simulations of
Nd-Fe-B magnets using first-principles results show that a 3-4% local strain in
a 2-nm-wide region near the interface around the grain boundaries and triple
junctions leads to a negative local K and thus decreases the coercivity by
~60%. The local ab biaxial stress state is more likely to induce a large loss
of coercivity. In addition to the local stress states and strain levels
themselves, the shape of the interfaces and the intergranular phases also makes
a difference in determining the coercivity. Smoothing the edge and reducing the
sharp angle of the triple regions in Nd-Fe-B magnets would be favorable for a
coercivity enhancement.Comment: 9 figure
- …
