6,046 research outputs found
Non-Gaussian Precision Metrology via Driving through Quantum Phase Transitions
We propose a scheme to realize high-precision quantum interferometry with
entangled non-Gaussian states by driving the system through quantum phase
transitions. The beam splitting, in which an initial non-degenerate groundstate
evolves into a highly entangled state, is achieved by adiabatically driving the
system from a non-degenerate regime to a degenerate one. Inversely, the beam
recombination, in which the output state after interrogation becomes gradually
disentangled, is accomplished by adiabatically driving the system from the
degenerate regime to the non-degenerate one. The phase shift, which is
accumulated in the interrogation process, can then be easily inferred via
population measurement. We apply our scheme to Bose condensed atoms and trapped
ions, and find that Heisenberg-limited precision scalings can be approached.
Our proposed scheme does not require single-particle resolved detection and is
within the reach of current experiment techniques.Comment: 6 pages, 4 figure
Superadditivity in trade-off capacities of quantum channels
In this article, we investigate the additivity phenomenon in the dynamic
capacity of a quantum channel for trading classical communication, quantum
communication and entanglement. Understanding such additivity property is
important if we want to optimally use a quantum channel for general
communication purpose. However, in a lot of cases, the channel one will be
using only has an additive single or double resource capacity, and it is
largely unknown if this could lead to an superadditive double or triple
resource capacity. For example, if a channel has an additive classical and
quantum capacity, can the classical-quantum capacity be superadditive? In this
work, we answer such questions affirmatively.
We give proof-of-principle requirements for these channels to exist. In most
cases, we can provide an explicit construction of these quantum channels. The
existence of these superadditive phenomena is surprising in contrast to the
result that the additivity of both classical-entanglement and classical-quantum
capacity regions imply the additivity of the triple capacity region.Comment: 15 pages. v2: typo correcte
A Novel Indium-Catalyzed Three-Component Reaction: General and Efficient One-Pot Synthesis of Substituted Pyrroles
A convenient and general approach towards the synthesis of substituted pyrroles from propargylic acetates, silyl enol ethers, and primary amines was described. This novel transformation was catalyzed by indium trichloride in a one-pot synthesis, and high yields of various pyrrole derivatives were obtained.National Natural Science Foundation of China [20772098
Iron(III) Chloride-catalyzed Nucleophilic Substitution of Propargylic Alcohols: A General and Efficient Approach for the Synthesis of 1,4-Diynes
A wide variety of 1,4-diynes have been constructed via a novel FeCl(3)-catalyzed coupling reaction of propargylic alcohols with alkynylsilanes. This synthetic approach provides a general, efficient, and economical route to 1,4-cliynes.National Natural Science Foundation of China[20772098, 21072159
Recommended from our members
Protective effect of human serum amyloid P on CCl4-induced acute liver injury in mice.
Human serum amyloid P (hSAP), a member of the pentraxin family, inhibits the activation of fibrocytes in culture and inhibits experimental renal, lung, skin and cardiac fibrosis. As hepatic inflammation is one of the causes of liver fibrosis, in the present study, we investigated the hepatoprotective effects of hSAP against carbon tetrachloride (CCl4)-induced liver injury. Our data indicated that hSAP attenuated hepatic histopathological abnormalities and significantly decreased inflammatory cell infiltration and pro-inflammatory factor expression. Moreover, CCl4-induced apoptosis in the mouse liver was inhibited by hSAP, as measured by terminal-deoxynucleotidyl transferase mediated nick-end labeling (TUNEL) assay and cleaved caspase-3 expression. hSAP significantly restored the expression of B cell lymphoma/leukemia (Bcl)-2 and suppressed the expression of Bcl-2-associated X protein (Bax) in vivo. The number of hepatocytes in early apoptosis stained with Annexin V was significantly reduced by 28-30% in the hSAP treatment group compared with the CCl4 group, and the expression of Bcl-2 was increased, whereas the expression of Bax and cleaved caspase-3 were significantly inhibited in the hSAP pre-treatment group compared with the CCl4 group. hSAP administration also inhibited the migration and activation of hepatic stellate cells (HSCs) in CCl4-injured liver and suppressed the activation of isolated primary HSCs induced by transforming growth factor (TGF)-β1 in vitro. Collectively, these findings suggest that hSAP exerts a protective effect againts CCl4-induced hepatic injury by suppressing the inflammatory response and hepatocyte apoptosis, potentially by inhibiting HSC activation
- …
