6,579 research outputs found
Precessionless spin transport wire confined in quasi-two-dimensional electron systems
We demonstrate that in an inversion-asymmetric two-dimensional electron
system 2DES with both Rashba and Dresselhaus spin-orbit couplings taken into
account, certain transport directions on which no spin precession occurs can be
found when the injected spin is properly polarized. By analyzing the
expectation value of spin with respect to the injected electron state on each
space point in the 2DES, we further show that the adjacent regions with
technically reachable widths along these directions exhibit nearly conserved
spin. Hence a possible application in semiconductor spintronics, namely,
precessionless spin transport wire, is proposed.Comment: 3 pages, 4 figures, to be appeared in Journal of Applied Physics,
Proceedings of the 50th MMM Conferenc
The effect of in-plane magnetic field on the spin Hall effect in Rashba-Dresselhaus system
In a two-dimensional electron gas with Rashba and Dresselhaus spin-orbit
couplings, there are two spin-split energy surfaces connected with a degenerate
point. Both the energy surfaces and the topology of the Fermi surfaces can be
varied by an in-plane magnetic field. We find that, if the chemical potential
falls between the bottom of the upper band and the degenerate point, then
simply by changing the direction of the magnetic field, the magnitude of the
spin Hall conductivity can be varied by about 100 percent. Once the chemical
potential is above the degenerate point, the spin Hall conductivity becomes the
constant , independent of the magnitude and direction of the magnetic
field. In addition, we find that the in-plane magnetic field exerts no
influence on the charge Hall conductivity.Comment: 11 pages, 3 figures, to be published on Phys. Rev.
Matrix Formulation of Hamiltonian Structures of Constrained KP Hierarchy
We give a matrix formulation of the Hamiltonian structures of constrained KP
hierarchy. First, we derive from the matrix formulation the Hamiltonian
structure of the one-constraint KP hierarchy, which was originally obtained by
Oevel and Strampp. We then generalize the derivation to the multi-constraint
case and show that the resulting bracket is actually the second Gelfand-Dickey
bracket associated with the corresponding Lax operator. The matrix formulation
of the Hamiltonian structure of the one-constraint KP hierarchy in the form
introduced in the study of matrix model is also discussedComment: 19 pages, Revtex, no figures. Minor changes, reference correcte
Recommended from our members
A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway
The pluripotency factor Lin28 blocks the expression of let-7 microRNAs (miRNAs) in undifferentiated cells during development and functions as an oncogene in a subset of cancers1. Lin28 binds to let-7 precursor RNAs and recruits 3′ terminal uridylyl transferases (TUTases) to selectively inhibit let-7 biogenesis2–4. Uridylated pre-let-7 is refractory to processing by Dicer and is rapidly degraded by an unknown ribonuclease5. Here we identify Dis3l2 as the 3′-5′ exonuclease responsible for the decay of uridylated pre-let-7. Biochemical reconstitution assays reveal that 3′ oligouridylation stimulates Dis3l2 activity in vitro, and knockdown of Dis3l2 in mouse embryonic stem cells leads to the stabilization of pre-let-7. Our study establishes 3′ oligouridylation as an RNA decay signal for Dis3l2 and identifies the first physiological RNA substrate of this novel exonuclease that is mutated in the Perlman syndrome of fetal overgrowth and predisposition to Wilms’ tumor6
Datta-Das transistor: Significance of channel direction, size-dependence of source contacts, and boundary effects
We analyze the spin expectation values for injected spin-polarized electrons
(spin vectors) in a [001]-grown Rashba-Dresselhaus two-dimensional electron gas
(2DEG). We generalize the calculation for point spin injection in semi-infinite
2DEGs to finite-size spin injection in bounded 2DEGs. Using the obtained spin
vector formula, significance of the channel direction for the Datta-Das
transistor is illustrated. Numerical results indicate that the influence due to
the finite-size injection is moderate, while the channel boundary reflection
may bring unexpected changes. Both effects are concluded to decrease when the
spin-orbit coupling strength is strong. Hence [110] is a robust channel
direction and is therefore the best candidate for the design of the Datta-Das
transistor.Comment: 5 pages, 4 figures, accepted for publication in Physical Review
Local spin density in two-dimensional electron gas with hexagonal boundary
The intrinsic spin-Hall effect in hexagon-shaped samples is investigated. To
take into account the spin-orbit couplings and to fit the hexagon edges, we
derive the triangular version of the tight-binding model for the linear Rashba
[Sov. Phys. Solid State 2, 1109 (1960)] and Dresselhaus [Phys. Rev. 100, 580
(1955)] [001] Hamiltonians, which allow direct application of the
Landauer-Keldysh non-equilibrium Green function formalism to calculating the
local spin density within the hexagonal sample. Focusing on the out-of-plane
component of spin, we obtain the geometry-dependent spin-Hall accumulation
patterns, which are sensitive to not only the sample size, the spin-orbit
coupling strength, the bias strength, but also the lead configurations.
Contrary to the rectangular samples, the accumulation pattern can be very
different in our hexagonal samples. Our present work provides a fundamental
description of the geometry effect on the intrinsic spin-Hall effect, taking
the hexagon as the specific case. Moreover, broken spin-Hall symmetry due to
the coexistence of the Rashba and Dresselhaus couplings is also discussed. Upon
exchanging the two coupling strengths, the accumulation pattern is reversed,
confirming the earlier predicted sign change in spin-Hall conductivity.Comment: 7 pages, 4 figure
Spin and charge transport in U-shaped one-dimensional channels with spin-orbit couplings
A general form of the Hamiltonian for electrons confined to a curved
one-dimensional (1D) channel with spin-orbit coupling (SOC) linear in momentum
is rederived and is applied to a U-shaped channel. Discretizing the derived
continuous 1D Hamiltonian to a tight-binding version, the Landauer-Keldysh
formalism (LKF) for nonequilibrium transport can be applied. Spin transport
through the U-channel based on the LKF is compared with previous quantum
mechanical approaches. The role of a curvature-induced geometric potential
which was previously neglected in the literature of the ring issue is also
revisited. Transport regimes between nonadiabatic, corresponding to weak SOC or
sharp turn, and adiabatic, corresponding to strong SOC or smooth turn, is
discussed. Based on the LKF, interesting charge and spin transport properties
are further revealed. For the charge transport, the interplay between the
Rashba and the linear Dresselhaus (001) SOCs leads to an additional modulation
to the local charge density in the half-ring part of the U-channel, which is
shown to originate from the angle-dependent spin-orbit potential. For the spin
transport, theoretically predicted eigenstates of the Rashba rings, Dresselhaus
rings, and the persistent spin-helix state are numerically tested by the
present quantum transport calculation.Comment: 16 pages, 7 figure
Spin precession due to spin-orbit coupling in a two-dimensional electron gas with spin injection via ideal quantum point contact
We present the analytical result of the expectation value of spin resulting
from an injected spin polarized electron into a semi-infinitely extended 2DEG
plane with [001] growth geometry via ideal quantum point contact. Both the
Rashba and Dresselhaus spin-orbit couplings are taken into account. A pictorial
interpretation of the spin precession along certain transport directions is
given. The spin precession due to the Rashba term is found to be especially
interesting since it behaves simply like a windshield wiper which is very
different from the ordinary precession while that due to the Dresselhaus term
is shown to be crystallographic-direction-dependent. Some crystallographic
directions with interesting and handleable behavior of spin precession are
found and may imply certain applicability in spintronic devices.Comment: 5 pages, 2 figures, submitted to Phys. Rev.
Observation of interlayer phonon modes in van der Waals heterostructures
We have investigated the vibrational properties of van der Waals
heterostructures of monolayer transition metal dichalcogenides (TMDs),
specifically MoS2/WSe2 and MoSe2/MoS2 heterobilayers as well as twisted MoS2
bilayers, by means of ultralow-frequency Raman spectroscopy. We discovered
Raman features (at 30 ~ 40 cm-1) that arise from the layer-breathing mode (LBM)
vibrations between the two incommensurate TMD monolayers in these structures.
The LBM Raman intensity correlates strongly with the suppression of
photoluminescence that arises from interlayer charge transfer. The LBM is
generated only in bilayer areas with direct layer-layer contact and atomically
clean interface. Its frequency also evolves systematically with the relative
orientation between of the two layers. Our research demonstrates that LBM can
serve as a sensitive probe to the interface environment and interlayer
interactions in van der Waals materials
- …
