6,579 research outputs found

    Precessionless spin transport wire confined in quasi-two-dimensional electron systems

    Full text link
    We demonstrate that in an inversion-asymmetric two-dimensional electron system 2DES with both Rashba and Dresselhaus spin-orbit couplings taken into account, certain transport directions on which no spin precession occurs can be found when the injected spin is properly polarized. By analyzing the expectation value of spin with respect to the injected electron state on each space point in the 2DES, we further show that the adjacent regions with technically reachable widths along these directions exhibit nearly conserved spin. Hence a possible application in semiconductor spintronics, namely, precessionless spin transport wire, is proposed.Comment: 3 pages, 4 figures, to be appeared in Journal of Applied Physics, Proceedings of the 50th MMM Conferenc

    The effect of in-plane magnetic field on the spin Hall effect in Rashba-Dresselhaus system

    Full text link
    In a two-dimensional electron gas with Rashba and Dresselhaus spin-orbit couplings, there are two spin-split energy surfaces connected with a degenerate point. Both the energy surfaces and the topology of the Fermi surfaces can be varied by an in-plane magnetic field. We find that, if the chemical potential falls between the bottom of the upper band and the degenerate point, then simply by changing the direction of the magnetic field, the magnitude of the spin Hall conductivity can be varied by about 100 percent. Once the chemical potential is above the degenerate point, the spin Hall conductivity becomes the constant e/8πe/8\pi, independent of the magnitude and direction of the magnetic field. In addition, we find that the in-plane magnetic field exerts no influence on the charge Hall conductivity.Comment: 11 pages, 3 figures, to be published on Phys. Rev.

    Matrix Formulation of Hamiltonian Structures of Constrained KP Hierarchy

    Full text link
    We give a matrix formulation of the Hamiltonian structures of constrained KP hierarchy. First, we derive from the matrix formulation the Hamiltonian structure of the one-constraint KP hierarchy, which was originally obtained by Oevel and Strampp. We then generalize the derivation to the multi-constraint case and show that the resulting bracket is actually the second Gelfand-Dickey bracket associated with the corresponding Lax operator. The matrix formulation of the Hamiltonian structure of the one-constraint KP hierarchy in the form introduced in the study of matrix model is also discussedComment: 19 pages, Revtex, no figures. Minor changes, reference correcte

    Datta-Das transistor: Significance of channel direction, size-dependence of source contacts, and boundary effects

    Full text link
    We analyze the spin expectation values for injected spin-polarized electrons (spin vectors) in a [001]-grown Rashba-Dresselhaus two-dimensional electron gas (2DEG). We generalize the calculation for point spin injection in semi-infinite 2DEGs to finite-size spin injection in bounded 2DEGs. Using the obtained spin vector formula, significance of the channel direction for the Datta-Das transistor is illustrated. Numerical results indicate that the influence due to the finite-size injection is moderate, while the channel boundary reflection may bring unexpected changes. Both effects are concluded to decrease when the spin-orbit coupling strength is strong. Hence [110] is a robust channel direction and is therefore the best candidate for the design of the Datta-Das transistor.Comment: 5 pages, 4 figures, accepted for publication in Physical Review

    Local spin density in two-dimensional electron gas with hexagonal boundary

    Full text link
    The intrinsic spin-Hall effect in hexagon-shaped samples is investigated. To take into account the spin-orbit couplings and to fit the hexagon edges, we derive the triangular version of the tight-binding model for the linear Rashba [Sov. Phys. Solid State 2, 1109 (1960)] and Dresselhaus [Phys. Rev. 100, 580 (1955)] [001] Hamiltonians, which allow direct application of the Landauer-Keldysh non-equilibrium Green function formalism to calculating the local spin density within the hexagonal sample. Focusing on the out-of-plane component of spin, we obtain the geometry-dependent spin-Hall accumulation patterns, which are sensitive to not only the sample size, the spin-orbit coupling strength, the bias strength, but also the lead configurations. Contrary to the rectangular samples, the accumulation pattern can be very different in our hexagonal samples. Our present work provides a fundamental description of the geometry effect on the intrinsic spin-Hall effect, taking the hexagon as the specific case. Moreover, broken spin-Hall symmetry due to the coexistence of the Rashba and Dresselhaus couplings is also discussed. Upon exchanging the two coupling strengths, the accumulation pattern is reversed, confirming the earlier predicted sign change in spin-Hall conductivity.Comment: 7 pages, 4 figure

    Spin and charge transport in U-shaped one-dimensional channels with spin-orbit couplings

    Get PDF
    A general form of the Hamiltonian for electrons confined to a curved one-dimensional (1D) channel with spin-orbit coupling (SOC) linear in momentum is rederived and is applied to a U-shaped channel. Discretizing the derived continuous 1D Hamiltonian to a tight-binding version, the Landauer-Keldysh formalism (LKF) for nonequilibrium transport can be applied. Spin transport through the U-channel based on the LKF is compared with previous quantum mechanical approaches. The role of a curvature-induced geometric potential which was previously neglected in the literature of the ring issue is also revisited. Transport regimes between nonadiabatic, corresponding to weak SOC or sharp turn, and adiabatic, corresponding to strong SOC or smooth turn, is discussed. Based on the LKF, interesting charge and spin transport properties are further revealed. For the charge transport, the interplay between the Rashba and the linear Dresselhaus (001) SOCs leads to an additional modulation to the local charge density in the half-ring part of the U-channel, which is shown to originate from the angle-dependent spin-orbit potential. For the spin transport, theoretically predicted eigenstates of the Rashba rings, Dresselhaus rings, and the persistent spin-helix state are numerically tested by the present quantum transport calculation.Comment: 16 pages, 7 figure

    Spin precession due to spin-orbit coupling in a two-dimensional electron gas with spin injection via ideal quantum point contact

    Full text link
    We present the analytical result of the expectation value of spin resulting from an injected spin polarized electron into a semi-infinitely extended 2DEG plane with [001] growth geometry via ideal quantum point contact. Both the Rashba and Dresselhaus spin-orbit couplings are taken into account. A pictorial interpretation of the spin precession along certain transport directions is given. The spin precession due to the Rashba term is found to be especially interesting since it behaves simply like a windshield wiper which is very different from the ordinary precession while that due to the Dresselhaus term is shown to be crystallographic-direction-dependent. Some crystallographic directions with interesting and handleable behavior of spin precession are found and may imply certain applicability in spintronic devices.Comment: 5 pages, 2 figures, submitted to Phys. Rev.

    Observation of interlayer phonon modes in van der Waals heterostructures

    Get PDF
    We have investigated the vibrational properties of van der Waals heterostructures of monolayer transition metal dichalcogenides (TMDs), specifically MoS2/WSe2 and MoSe2/MoS2 heterobilayers as well as twisted MoS2 bilayers, by means of ultralow-frequency Raman spectroscopy. We discovered Raman features (at 30 ~ 40 cm-1) that arise from the layer-breathing mode (LBM) vibrations between the two incommensurate TMD monolayers in these structures. The LBM Raman intensity correlates strongly with the suppression of photoluminescence that arises from interlayer charge transfer. The LBM is generated only in bilayer areas with direct layer-layer contact and atomically clean interface. Its frequency also evolves systematically with the relative orientation between of the two layers. Our research demonstrates that LBM can serve as a sensitive probe to the interface environment and interlayer interactions in van der Waals materials
    corecore