19,944 research outputs found

    High performance millimeter-wave microstrip circulators and isolators

    Get PDF
    Millimeter wave systems, phased array antennas, and high performance components all require wideband circulators (and isolators) to perform diplexing and switching, to improve isolation and Voltage Standing Wave Ratio (VSWR), and to construct IMPATT diode reflection amplifiers. Presently, most of the millimeter-wave circulators and isolators are available in the configurations of waveguide or stripline, both of which suffer from the shortcomings of bulky size/weight, narrow bandwidth, and poor compatibility with monolithic millimeter-wave integrated circuits (MMIC). MMW microstrip circulators/isolators can eliminate or improve these shortcomings. Stub-tuned microstrip circulator configuration were developed utilizing the electromagnetic fields perturbation technique, the adhesion problems of microstrip metallization on new ferrite substrate were overcome, the fabrication, assembly, packaging techniques were improved, and then successfully designed, fabricated a Ka band circulator which has isolation and return loss of greater than 16dB, insertion loss less than 0.7dB. To assess the steady and reliable performance of the circulator, a temperature cycling test was done over the range of -20 to +50 C for 3 continuous cycles and found no significant impact or variation of circulator performance

    Asymptotic distributions of the signal-to-interference ratios of LMMSE detection in multiuser communications

    Full text link
    Let sk=1N(v1k,...,vNk)T,{\mathbf{s}}_k=\frac{1}{\sqrt{N}}(v_{1k},...,v_{Nk})^T, k=1,...,Kk=1,...,K, where {vik,i,k\{v_{ik},i,k =1,...}=1,...\} are independent and identically distributed random variables with Ev11=0Ev_{11}=0 and Ev112=1Ev_{11}^2=1. Let Sk=(s1,...,sk1,{\mathbf{S}}_k=({\mathbf{s}}_1,...,{\mathbf{s}}_{k-1}, sk+1,...,sK){\mathbf{s}}_{k+1},...,{\mathbf{s}}_K), Pk=diag(p1,...,{\mathbf{P}}_k=\operatorname {diag}(p_1,..., pk1,pk+1,...,pK)p_{k-1},p_{k+1},...,p_K) and \beta_k=p_k{\mathbf{s}}_k^T({\mathb f{S}}_k{\mathbf{P}}_k{\mathbf{S}}_k^T+\sigma^2{\mathbf{I}})^{-1}{\math bf{s}}_k, where pk0p_k\geq 0 and the βk\beta_k is referred to as the signal-to-interference ratio (SIR) of user kk with linear minimum mean-square error (LMMSE) detection in wireless communications. The joint distribution of the SIRs for a finite number of users and the empirical distribution of all users' SIRs are both investigated in this paper when KK and NN tend to infinity with the limit of their ratio being positive constant. Moreover, the sum of the SIRs of all users, after subtracting a proper value, is shown to have a Gaussian limit.Comment: Published at http://dx.doi.org/10.1214/105051606000000718 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Learning to Deblur Images with Exemplars

    Full text link
    Human faces are one interesting object class with numerous applications. While significant progress has been made in the generic deblurring problem, existing methods are less effective for blurry face images. The success of the state-of-the-art image deblurring algorithms stems mainly from implicit or explicit restoration of salient edges for kernel estimation. However, existing methods are less effective as only few edges can be restored from blurry face images for kernel estimation. In this paper, we address the problem of deblurring face images by exploiting facial structures. We propose a deblurring algorithm based on an exemplar dataset without using coarse-to-fine strategies or heuristic edge selections. In addition, we develop a convolutional neural network to restore sharp edges from blurry images for deblurring. Extensive experiments against the state-of-the-art methods demonstrate the effectiveness of the proposed algorithms for deblurring face images. In addition, we show the proposed algorithms can be applied to image deblurring for other object classes.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence 201

    Ks, Lambda and Xi production at intermediate to high pT from Au+Au collisions at \sqrt{s_{NN}} = 39, 11.5 and 7.7 GeV

    Full text link
    We report on the pT dependence of nuclear modification factors (RCPR_{CP}) for Ks, Lambda, Xi and the Anti-Lambda/Ks ratios at mid-rapidity from Au+Au collisions at \sqrt{s_{NN}} = 39, 11.5 and 7.7 GeV. At \sqrt{s_{NN}} = 39 GeV, the RCPR_{CP} data shows a baryon/meson separation at intermediate pT and a suppression for Ks for pT up to 4.5 GeV/cc; the Anti-Lambda/Ks shows baryon enhancement in the most central collisions. However, at \sqrt{s_{NN}} = 11.5 and 7.7 GeV, RCPR_{CP} shows much less baryon/meson separation and Anti-Lambda/Ks shows almost no baryon enhancement. These observations indicate that the matter created in Au+Au collisions at \sqrt{s_{NN}} = 11.5 or 7.7 GeV might be distinct from that created at \sqrt{s_{NN}} = 39 GeV.Comment: 4 pages, 2 figures, to appear in the proceedings of 7th International Workshop on Critical Point and Onset of Deconfinement (CPOD2011), Wuhan, China, Nov. 7-11, 201
    corecore