2,731 research outputs found
The Relevance of Academic Libraries in the Twenty-First Century
The biggest challenge facing the library profession in the twenty-first century is staying relevant to its users. It is often stated that the Internet and Google have changed librarianship. This challenge, while significant, does not mean that libraries will go away. It is causing us to re-evaluate what we do, how we do it, and what role libraries have in the academy and in our culture at large. This column addresses some of the ways in which academic libraries can stay relevant throughout the twenty-first century
Insulin signaling in insulin resistance states and cancer: A modeling analysis
Insulin resistance is the common denominator of several diseases including type 2 diabetes and cancer, and investigating the mechanisms responsible for insulin signaling impairment is of primary importance. A mathematical model of the insulin signaling network (ISN) is proposed and used to investigate the dose-response curves of components of this network. Experimental data of C2C12 myoblasts with phosphatase and tensin homologue (PTEN) suppressed and data of L6 myotubes with induced insulin resistance have been analyzed by the model. We focused particularly on single and double Akt phosphorylation and pointed out insulin signaling changes related to insulin resistance. Moreover, a new characterization of the upstream signaling of the mammalian target of rapamycin complex 2 (mTORC2) is presented. As it is widely recognized that ISN proteins have a crucial role also in cell proliferation and death, the ISN model was linked to a cell population model and applied to data of a cell line of acute myeloid leukemia treated with a mammalian target of rapamycin inhibitor with antitumor activity. The analysis revealed simple relationships among the concentrations of ISN proteins and the parameters of the cell population model that characterize cell cycle progression and cell death
Pulse processing routines for neutron time-of-flight data
A pulse shape analysis framework is described, which was developed for
n_TOF-Phase3, the third phase in the operation of the n_TOF facility at CERN.
The most notable feature of this new framework is the adoption of generic pulse
shape analysis routines, characterized by a minimal number of explicit
assumptions about the nature of pulses. The aim of these routines is to be
applicable to a wide variety of detectors, thus facilitating the introduction
of the new detectors or types of detectors into the analysis framework. The
operational details of the routines are suited to the specific requirements of
particular detectors by adjusting the set of external input parameters. Pulse
recognition, baseline calculation and the pulse shape fitting procedure are
described. Special emphasis is put on their computational efficiency, since the
most basic implementations of these conceptually simple methods are often
computationally inefficient.Comment: 13 pages, 10 figures, 5 table
Characterization of bacteriophages infecting clinical isolates of Pseudomonas aeruginosa stored in a culture collection
Some clinical isolates of Pseudomonas aeruginosa stored in our culture collection did not grow or grew poorly and showed lysis on the culture plates when removed from the collection and inoculated on MacConkey agar. One hypothesis was that bacteriophages had infected and killed those clinical isolates. To check the best storage conditions to maintain viable P. aeruginosa for a longer time, clinical isolates were stored at various temperatures and were grown monthly. We investigated the presence of phage in 10 clinical isolates of P. aeruginosa stored in our culture collection. Four strains of P. aeruginosa were infected by phages that were characterized by electron microscopy and isolated to assess their ability to infect. The best condition to maintain the viability of the strains during storage was in water at room temperature. Three Siphoviridae and two Myoviridae phages were visualized and characterized by morphology. We confirmed the presence of bacteriophages infecting clinical isolates, and their ability to infect and lyse alternative hosts. Strain PAO1, however, did not show lysis to any phage. Mucoid and multidrug resistant strains of P. aeruginosa showed lysis to 50% of the phages tested.Universidade Federal de São Paulo (UNIFESP) Divisao de Doencas Infecciosas Laboratorio Especial de Microbiologia ClinicaInstituto Adolfo Lutz Nucleo de Microscopia EletronicaUNIFESP, Divisao de Doencas Infecciosas Laboratorio Especial de Microbiologia ClinicaSciEL
The nucleosynthesis of heavy elements in stars: the key isotope 25Mg
INPC 2013 – International Nuclear Physics ConferenceWe have measured the radiative neutron-capture cross section and the total neutron-induced cross section of one of the most important isotopes for the s process, the 25Mg. The measurements have been carried out at the neutron time-of-flight facilities n_TOF at CERN (Switzerland) and GELINA installed at the EC-JRC-IRMM (Belgium). The cross sections as a function of neutron energy have been measured up to approximately 300 keV, covering the energy region of interest to the s process. The data analysis is ongoing and preliminary results show the potential relevance for the s proces
238U(n, γ) reaction cross section measurement with C6D6 detectors at the n_TOF CERN facility
INPC 2013 – International Nuclear Physics ConferenceThe radiative capture cross section of 238U is very important for the developing of new reactor technologies and the safety of existing ones. Here the preliminary results of the 238U(n,γ) cross section measurement performed at n_TOF with C6D6 scintillation detectors are presented, paying particular attention to data reduction and background subtractio
Measurement of the 70Ge(n,γ) cross section up to 300 keV at the CERN n_TOF facility
Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The (n,γ) cross section on 70Ge, which is mainly produced in the s process, was measured at the neutron time-of-flight facility n_TOF at CERN. Resonance capture kernels were determined up to 40 keV neutron energy and average cross sections up to 300 keV. Stellar cross sections were calculated from kT =5 keV tokT =100 keV and are in very good agreement with a previous measurement by Walter and Beer (1985) and recent evaluations. Average cross sectionsareinagreementwithWalterandBeer(1985)overmostoftheneutronenergyrangecovered,whilethey aresystematicallysmallerforneutronenergiesabove150keV.Wehavecalculatedisotopicabundancesproduced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances, the close to solar model shows a good global match to solar system abundances in the range of mass numbers A=60–80.Austrian Science Fund J3503Adolf Messer Foundation ST/M006085/1European Research Council ERC2015-StGCroatian Science Foundation IP-2018-01-857
Neutron cross sections in stellar nucleosynthesis: Study of the key isotope 25Mg
In this document the important role of 25Mg within nucleosynthesis processes is studied. In fact the initial conditions of s-process in massive and AGB stars depend on neutron-induced reactions on 25Mg, being this isotope involved both in neutron production and as a neutron poison. Because of the importance of 25Mg, very accurate and precise measurements of its capture cross section, at the n TOF CERN facility, and of its total cross section, at the EC-JRC-IRMM facility in Belgium, were performed. The aims of these measurements are both to weight the contribution of 25Mg as a neutron poison and to give constraints for the reaction rate of one of the main neutron sources for the s-process
Recommended from our members
Corticotropin-releasing hormone as the homeostatic rheostat of feto-maternal symbiosis and developmental programming In utero and neonatal life
A balanced interaction between the homeostatic mechanisms of mother and the devel- oping organism during pregnancy and in early neonatal life is essential in order to ensure optimal fetal development, ability to respond to various external and internal challenges, protection from adverse programming, and safeguard maternal care availability after parturition. In the majority of pregnancies, this relationship is highly effective resulting in successful outcomes. However, in a number of pathological settings, perturbations of the maternal homeostasis disrupt this symbiosis and initiate adaptive responses with unpre- dictable outcomes for the fetus or even the neonate. This may lead to development of pathological phenotypes arising from developmental reprogramming involving interaction of genetic, epigenetic, and environmental-driven pathways, sometimes with acute conse- quences (e.g., growth impairment) and sometimes delayed (e.g., enhanced susceptibility to disease) that last well into adulthood. Most of these adaptive mechanisms are activated and controlled by hormones of the hypothalamo-pituitary adrenal axis under the influ- ence of placental steroid and peptide hormones. In particular, the hypothalamic peptide corticotropin-releasing hormone (CRH) plays a key role in feto-maternal communication by orchestrating and integrating a series of neuroendocrine, immune, metabolic, and behavioral responses. CRH also regulates neural networks involved in maternal behavior and this determines efficiency of maternal care and neonate interactions. This review will summarize our current understanding of CRH actions during the perinatal period, focusing on the physiological roles for both mother and offspring and also how external challenges can alter CRH actions and potentially impact on fetus/neonate health
- …
