218 research outputs found

    Virtual Genome-Based Cryptography (VGC)

    Full text link

    Formation of Nε-Carboxymethyl-Lysine and Nε-Carboxyethyl-Lysine in Pacific Oyster (Crassostrea gigas) Induced by Thermal Processing Methods

    No full text
    Advanced glycation end products (AGEs) are important endogenous hazardous substances produced during the thermal processing of foods, which have attracted much attention due to the potential health risks. The current research first investigated the effect of different thermal processing methods (steaming, boiling, sous vide (SV), and sterilizing) on the formation of two typical markers of AGEs, including Nε-carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine (CEL), in Pacific oyster (Crassostrea gigas). The compositions, lipid oxidation, di-carbonyl compounds, and AGEs in 12 kinds of processed oysters were detected, and the Index values (total Z-score) were calculated. The SV treatment at 70°C caused higher processing yield and lower CEL level while sterilizing in oil at 121°C greatly resulted in the formation of CML. The Index value of SV-treated oysters was much lower than steamed, boiled, and sterilized ones. Correlation analysis showed that the CML and CEL levels were positively correlated with fat content, a* and b* value (p &amp;lt; 0.05), and negatively correlated with moisture content and L* value (p &amp;lt; 0.05). Besides, thiobarbituric acid reactive substances had a negative correlation with CML (r = −0.63, p &amp;lt; 0.05) while no significant correlation with CEL (p &amp;gt; 0.05), suggesting that lipid oxidation had a greater effect on the formation of CML but less on the formation of CEL. In summary, SV treatment at 70°C within 15 min was a recommended thermal processing method to reduce the formation of AGEs in oysters.</jats:p

    Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha

    No full text
    Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1) was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV) 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha
    corecore