216 research outputs found

    On the relation between the mass of Compact Massive Objects and their host galaxies

    Get PDF
    Supermassive black holes and/or very dense stellar clusters are found in the central regions of galaxies. Nuclear star clusters are present mainly in faint galaxies while upermassive black holes are common in galaxies with masses 1010\geq 10^{10} M_\odot . In the intermediate galactic mass range both types of central massive objects (CMOs) are found. Here we present our collection of a huge set of nuclear star cluster and massive black hole data that enlarges significantly already existing data bases useful to investigate for correlations of their absolute magnitudes, velocity dispersions and masses with structural parameters of their host galaxies. In particular, we directed our attention to some differences between the correlations of nuclear star clusters and massive black holes as subsets of CMOs with hosting galaxies. In this context, the mass-velocity dispersion relation plays a relevant role because it seems the one that shows a clearer difference between the supermassive black holes and nuclear star clusters. The MMBHσM_{MBH}-{\sigma} has a slope of 5.19±0.285.19\pm 0.28 while MNSCσM_{NSC}-{\sigma} has the much smaller slope of 1.84±0.641.84\pm 0.64. The slopes of the CMO mass- host galaxy B magnitude of the two types of CMOs are indistinguishable within the errors while that of the NSC mass-host galaxy mass relation is significantly smaller than for supermassive black holes. Another important result is the clear depauperation of the NSC population in bright galaxy hosts, which reflects also in a clear flattening of the NSC mass vs host galaxy mass at high host masses.Comment: 12 pages, 22 figures, 2 tables, accepted for publication in MNRA

    Measurement-Based Small-Scale Channel Model for Sub-6 GHz RIS-Assisted Communications

    Full text link
    Reconfigurable intelligent surfaces (RISs) have attracted increasing interest from both academia and industry, thanks to their unique features on controlling electromagnetic (EM) waves. Although theoretical models for RIS-empowered communications have covered a variety of applications, yet, very few papers have investigated the modeling of real propagation characteristics. In this paper, we fill this gap by providing an empirical statistical channel model to describe the small-scale channel variations for an RIS-assisted broadband system at 2.6 GHz. Based on real channel measurements in outdoor, indoor and outdoor-to-indoor (O2I) environments, we compare and analyze the global, inter-cluster and intra-cluster parameters. Measurement results indicate that the deployment of an RIS with proper phase configurations can significantly improve the channel quality by enhancing the KK-factor and reducing the time dispersion. The small-scale fading is well characterized by the proposed statistical model and the empirical channel parameters. These results are essential for the design of emerging RIS-assisted wireless systems for future applications
    corecore