1,261 research outputs found
Interventional programmes to improve cognition during healthy and pathological ageing: Cortical modulations and evidence for brain plasticity
Available online 06 March 2018A growing body of evidence suggests that healthy elderly individuals and patients with Alzheimer’s disease retain an important potential for neuroplasticity. This review summarizes studies investigating the modulation of neural activity and structural brain integrity in response to interventions involving cognitive training, physical exercise and non-invasive brain stimulation in healthy elderly and cognitively impaired subjects (including patients with mild cognitive impairment (MCI) and Alzheimer’s disease). Moreover, given the clinical relevance of neuroplasticity, we discuss how evidence for neuroplasticity can be inferred from the functional and structural brain changes observed after implementing these interventions. We emphasize that multimodal programmes, which combine several types of interventions, improve cognitive function to a greater extent than programmes that use a single interventional approach. We suggest specific methods for weighting the relative importance of cognitive training, physical exercise and non-invasive brain stimulation according to the functional and structural state of the brain of the targeted subject to maximize the cognitive improvements induced by multimodal programmes.This study was funded by the European Commission Marie-Skłodowska Curie Actions, Individual Fellowships; 655423-NIBSAD, Italian Ministry of HealthGR-2011-02349998, and Galician government (Postdoctoral Grants Plan I2C 2011-2015)
Mechanochemical Synthesis of Multicomponent Crystals: One Liquid for One Polymorph? A Myth to Dispel
Identifying as many polymorphs as possible for a molecular compound is important in the design of materials with desired properties. In this paper we demonstrate, using a simple experimental procedure, how the amount of liquid present during liquid-assisted mechanochemical reactions can be used to rapidly explore polymorph diversity. Through detailed experimental evidence it is concluded that for the specific (multicomponent) crystal system investigated (caffeine−anthranilic acid) the commonly accepted rule “one liquid for one specific polymorph” is not correct. Additionally we demonstrate that through modification of the amount of added liquid it is possible to form a polymorph previously obtained only by a desolvation reaction. We believe that while the results raise many mechanistic questions the approach is advantageous as a means of rapidly screening for polymorph diversity as well as being a simple screening methodology. While we focus here on a cocrystal system, we believe a similar approach will be advantageous for single component systems.This is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/acs.cgd.6b0068
A simultaneous modulation of reactive and proactive inhibition processes by anodal tDCS on the right inferior frontal cortex
Proactive and reactive inhibitory processes are a fundamental part of executive functions, allowing a person to stop inappropriate responses when necessary and to adjust performance in in a long term in accordance to the goals of a task. In the current study, we manipulate, in a single task, both reactive and proactive inhibition mechanisms, and we investigate the within-subjects effect of increasing, by means of anodal transcranial direct current stimulation (tDCS), the involvement of the right inferior frontal cortex (rIFC). Our results show a simultaneous enhancement of these two cognitive mechanisms when modulating the neural activity of rIFC. Thus, the application of anodal tDCS increased reaction times on Go trials, indicating a possible increase in proactive inhibition. Concurrently, the stop-signal reaction time, as a covert index of the inhibitory process, was reduced, demonstrating an improvement in reactive inhibition. In summary, the current pattern of results validates the engagement of the rIFC in these two forms of inhibitory processes, proactive and reactive inhibition and it provides evidence that both processes can operate concurrently in the brain
A transcranial magnetic stimulation study on response activation and selection in spatial conflict
Spectroscopic characterization of graphene films grown on Pt (111) surface by chemical vapor deposition of ethylene
This work reports the peculiar properties of a graphene film prepared by the
chemical vapor deposition (CVD) of ethylene in high vacuum on a well oriented
and carefully cleaned Pt(111) crystal surface maintained at high temperature.
In-situ and ex-situ characterization techniques (low energy electron
diffraction, high resolution electron energy loss spectroscopy, scanning
electron microscopy and Raman micro-spectroscopy) used here indicate the
prevalence of single layer regions and the presence of two different
orientations of the graphene sheets with respect to the Pt(111) substrate. In
most of the deposited area evidence is found of a compressive stress for the
graphene lattice, as a net result of the growth process on a metal substrate.
This graphene film grown on Pt(111) exhibits a lower degree of order and of
homogeneity with respect to the exfoliated graphene on Si/SiO2, as it is found
generally for graphene on metals, but several characterization techniques
indicates a better quality than in previous deposition experiments on the same
metal substrate.Comment: 18 pages, 5 figures, Journal of Raman spectroscopy 201
Role of the anterior temporal lobes in semantic representations: paradoxical results of a cTBS study
According to the 'Semantic Hub' model, which was developed from data gathered in the moderate to advanced stages of semantic dementia (SD), a unitary amodal mechanism, located in the anterior parts of both temporal lobes (ATLs), should support the interactive activation of semantic representations in all modalities and for all semantic categories. This model has been challenged by clinical findings, which show that in the early stages of SD, when important asymmetries can be observed at the level of the right and left ATLs, the semantic impairment can be modality-specific, mainly affecting lexical-semantic knowledge when the left temporal lobe is more atrophic and pictorial representations when atrophy prevails on the right side. On the other hand, findings of experiments conducted in normal subjects with repetitive transcranial magnetic stimulations (rTMS), support the unitary model. In the most compelling of these studies, rTMS was used to investigate the role of right and left ATLs directly, by comparing semantic processing of the same concepts, presented as written words or pictures. The efficiency of semantic processing for words and pictures was reduced to the same degree by rTMS applied to the left and right ATLs. However, to consider more in depth some methodological inconsistencies of these studies and with the aim of discussing the effects of rTMS on high-level cognitive functions, we decided to repeat that experimental paradigm, using the continuous theta burst stimulation (cTBS) protocol over the right ATL, left ATL and vertex (as control site). A significant interaction was found between side of cTBS application and type of stimulus, but, contrary to our predictions, we observed significantly faster (rather than slower) responses to pictures after application of cTBS to the right ATL and no difference between responses to written words after application of cTBS to the left ATL in comparison with the vertex. These unexpected results are discussed with respect to the nature of the semantic representations supported by the right and left ATLs and to re-appraisal of the 'virtual lesion' account to explain results obtained with rTMS experiments on high-level cognitive functions
Multiabsorber Transition-Edge Sensors for X-Ray Astronomy
We are developing arrays of position-sensitive microcalorimeters for future x-ray astronomy applications. These position-sensitive devices commonly referred to as hydras consist of multiple x-ray absorbers, each with a different thermal coupling to a single-transition-edge sensor microcalorimeter. Their development is motivated by a desire to achieve very large pixel arrays with some modest compromise in performance. We report on the design, optimization, and first results from devices with small pitch pixels (<75 m) being developed for a high-angular and energy resolution imaging spectrometer for Lynx. The Lynx x-ray space telescope is a flagship mission concept under study for the National Academy of Science 2020 decadal survey. Broadband full-width-half-maximum (FWHM) resolution measurements on a 9-pixel hydra have demonstrated E(FWHM) = 2.23 0.14 eV at Al-K, E(FWHM) = 2.44 0.29 eV at Mn-K, and E(FWHM) = 3.39 0.23 eV at Cu-K. Position discrimination is demonstrated to energies below <1 keV and the device performance is well-described by a finite-element model. Results from a prototype 20-pixel hydra with absorbers on a 50-m pitch have shown E(FWHM) = 3.38 0.20 eV at Cr-K1. We are now optimizing designs specifically for Lynx and extending the number of absorbers up to 25/hydra. Numerical simulation suggests optimized designs could achieve 3 eV while being compatible with the bandwidth requirements of the state-of-the art multiplexed readout schemes, thus making a 100,000 pixel microcalorimeter instrument a realistic goal
Recommended from our members
Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation
The Planck High Frequency Instrument (HFI) surveyed the sky continuously from
August 2009 to January 2012. Its noise and sensitivity performance were
excellent, but the rate of cosmic ray impacts on the HFI detectors was
unexpectedly high. Furthermore, collisions of cosmic rays with the focal plane
produced transient signals in the data (glitches) with a wide range of
characteristics. A study of cosmic ray impacts on the HFI detector modules has
been undertaken to categorize and characterize the glitches, to correct the HFI
time-ordered data, and understand the residual effects on Planck maps and data
products. This paper presents an evaluation of the physical origins of glitches
observed by the HFI detectors. In order to better understand the glitches
observed by HFI in flight, several ground-based experiments were conducted with
flight-spare HFI bolometer modules. The experiments were conducted between 2010
and 2013 with HFI test bolometers in different configurations using varying
particles and impact energies. The bolometer modules were exposed to 23 MeV
protons from the Orsay IPN TANDEM accelerator, and to Am and Cm
-particle and Fe radioactive X-ray sources. The calibration data
from the HFI ground-based preflight tests were used to further characterize the
glitches and compare glitch rates with statistical expectations under
laboratory conditions. Test results provide strong evidence that the dominant
family of glitches observed in flight are due to cosmic ray absorption by the
silicon die substrate on which the HFI detectors reside. Glitch energy is
propagated to the thermistor by ballistic phonons, while there is also a
thermal diffusion contribution. The implications of these results for future
satellite missions, especially those in the far-infrared to sub-millimetre and
millimetre regions of the electromagnetic spectrum, are discussed.Comment: 11 pages, 13 figure
Thermal Stability of Corrugated Epitaxial Graphene Grown on Re(0001)
We report on a novel approach to determine the relationship between the corrugation and the thermal stability of epitaxial graphene grown on a strongly interacting substrate. According to our density functional theory calculations, the C single layer grown on Re(0001) is strongly corrugated, with a buckling of 1.6 angstrom, yielding a simulated C 1s core level spectrum which is in excellent agreement with the experimental one. We found that corrugation is closely knit with the thermal stability of the C network: C-C bond breaking is favored in the strongly buckled regions of the moire cell, though it requires the presence of diffusing graphene layer vacancies
- …
