1,292 research outputs found
Can a charged ring levitate a neutral, polarizable object? Can Earnshaw's Theorem be extended to such objects?
Stable electrostatic levitation and trapping of a neutral, polarizable object
by a charged ring is shown to be theoretically impossible. Earnshaw's Theorem
precludes the existence of such a stable, neutral particle trap.Comment: 11 pages, 1 figur
Tiny scale opacity fluctuations from VLBA, MERLIN and VLA observations of HI absorption toward 3C 138
The structure function of opacity fluctuations is a useful statistical tool
to study tiny scale structures of neutral hydrogen. Here we present high
resolution observation of HI absorption towards 3C 138, and estimate the
structure function of opacity fluctuations from the combined VLA, MERLIN and
VLBA data. The angular scales probed in this work are ~ 10-200 milliarcsec
(about 5-100 AU). The structure function in this range is found to be well
represented by a power law S_tau(x) ~ x^{beta} with index beta ~ 0.33 +/- 0.07
corresponding to a power spectrum P_tau(U) ~ U^{-2.33}. This is slightly
shallower than the earlier reported power law index of ~ 2.5-3.0 at ~ 1000 AU
to few pc scales. The amplitude of the derived structure function is a factor
of ~ 20-60 times higher than the extrapolated amplitude from observation of Cas
A at larger scales. On the other hand, extrapolating the AU scale structure
function for 3C 138 predicts the observed structure function for Cas A at the
pc scale correctly. These results clearly establish that the atomic gas has
significantly more structures in AU scales than expected from earlier pc scale
observations. Some plausible reasons are identified and discussed here to
explain these results. The observational evidence of a shallower slope and the
presence of rich small scale structures may have implications for the current
understanding of the interstellar turbulence.Comment: 6 pages, 5 figures. Accepted for publication in ApJ. The definitive
version will be available at http://iopscience.iop.org
A 42.3-43.6 GHz spectral survey of Orion BN/KL: First detection of the v=0 J=1-0 line from the isotopologues 29SiO and 30SiO
We have surveyed molecular line emission from Orion BN/KL from 42.3 to 43.6
GHz with the Green Bank Telescope. Sixty-seven lines were identified and
ascribed to 13 different molecular species. The spectrum at 7 mm is dominated
by SiO, SO2, CH3OCH3, and C2H5CN. Five transitions have been detected from the
SiO isotopologues 28SiO, 29SiO, and 30SiO.
We report here for the first time the spectra of the 29SiO and 30SiO v=0
J=1-0 emission in Orion BN/KL, and we show that they have double-peaked
profiles with velocity extents similar to the main isotopologue. The main
motivation for the survey was the search of high-velocity (100-1000 km/s)
outflows in the BN/KL region as traced by SiO Doppler components. Some of the
unidentified lines in principle could be high-velocity SiO features, but
without imaging data their location cannot be established.
Wings of emission are present in the v=0 28SiO, 29SiO and 30SiO profiles, and
we suggest that the v=0 emission from the three isotopologues might trace a
moderately high-velocity (~30-50 km/s) component of the flows around the
high-mass protostar Source I in the Orion BN/KL region.
We also confirm the 7 mm detection of a complex oxygen-bearing species,
acetone (CH3COCH3), which has been recently observed towards the hot core at 3
mm, and we have found further indications of the presence of long cyanopolyynes
(HC5N and HC7N) in the quiescent cold gas of the extended ridge.Comment: 27 pages, 3 figures, accepted by Ap
Simultaneous Multi-band Radio & X-ray Observations of the Galactic Center Magnetar SGR 17452900
We report on multi-frequency, wideband radio observations of the Galactic
Center magnetar (SGR 17452900) with the Green Bank Telescope for 100
days immediately following its initial X-ray outburst in April 2013. We made
multiple simultaneous observations at 1.5, 2.0, and 8.9 GHz, allowing us to
examine the magnetar's flux evolution, radio spectrum, and interstellar medium
parameters (such as the dispersion measure (DM), the scattering timescale and
its index). During two epochs, we have simultaneous observations from the
Chandra X-ray Observatory, which permitted the absolute alignment of the radio
and X-ray profiles. As with the two other radio magnetars with published
alignments, the radio profile lies within the broad peak of the X-ray profile,
preceding the X-ray profile maximum by 0.2 rotations. We also find that
the radio spectral index is significantly negative between 2 and
9 GHz; during the final 30 days of our observations ,
which is typical of canonical pulsars. The radio flux has not decreased during
this outburst, whereas the long-term trends in the other radio magnetars show
concomitant fading of the radio and X-ray fluxes. Finally, our wideband
measurements of the DMs taken in adjacent frequency bands in tandem are
stochastically inconsistent with one another. Based on recent theoretical
predictions, we consider the possibility that the dispersion measure is
frequency-dependent. Despite having several properties in common with the other
radio magnetars, such as , an
increase in the radio flux during the X-ray flux decay has not been observed
thus far in other systems.Comment: 15 pages, 9 figures, 3 tables; accepted to Ap
Properties of the warm magnetized ISM, as inferred from WSRT polarimetric imaging
We describe a first attempt to derive properties of the regular and turbulent
Galactic magnetic field from multi-frequency polarimetric observations of the
diffuse Galactic synchrotron background. A single-cell-size model of the thin
Galactic disk is constructed which includes random and regular magnetic fields
and thermal and relativistic electrons. The disk is irradiated from behind with
a uniform partially polarized background. Radiation from the background and
from the thin disk is Faraday rotated and depolarized while propagating through
the medium. The model parameters are estimated from a comparison with 350 MHz
observations in two regions at intermediate latitudes done with the Westerbork
Synthesis Radio Telescope. We obtain good consistency between the estimates for
the random and regular magnetic field strengths and typical scales of structure
in the two regions. The regular magnetic field strength found is a few
microGauss, and the ratio of random to regular magnetic field strength is 0.7
+/- 0.5, for a typical scale of the random component of 15 +/- 10 pc.
Furthermore, the regular magnetic field is directed almost perpendicular to the
line of sight. This modeling is a potentially powerful method to estimate the
structure of the Galactic magnetic field, especially when more polarimetric
observations of the diffuse synchrotron background at intermediate latitudes
become available.Comment: 12 pages, 6 figures, accepted by A&
Plasma Turbulence in the Local Bubble
Turbulence in the Local Bubble could play an important role in the
thermodynamics of the gas that is there. The best astronomical technique for
measuring turbulence in astrophysical plasmas is radio scintillation.
Measurements of the level of scattering to the nearby pulsar B0950+08 by
Philips and Clegg in 1992 showed a markedly lower value for the line-of-sight
averaged turbulent intensity parameter is smaller than normal for two of them, but is completely nominal for
the third. This inconclusive status of affairs could be improved by
measurements and analysis of ``arcs'' in ``secondary spectra'' of pulsars.Comment: Submitted to Space Science Reviews as contribution to Proceedings of
ISSI (International Space Science Institute) workshop "From the Heliosphere
to the Local Bubble". Refereed version accepted for publicatio
On Pulsar Distance Measurements and their Uncertainties
Accurate distances to pulsars can be used for a variety of studies of the
Galaxy and its electron content. However, most distance measures to pulsars
have been derived from the absorption (or lack thereof) of pulsar emission by
Galactic HI gas, which typically implies that only upper or lower limits on the
pulsar distance are available. We present a critical analysis of all measured
HI distance limits to pulsars and other neutron stars, and translate these
limits into actual distance estimates through a likelihood analysis that
simultaneously corrects for statistical biases. We also apply this analysis to
parallax measurements of pulsars in order to obtain accurate distance estimates
and find that the parallax and HI distance measurements are biased in different
ways, because of differences in the sampled populations. Parallax measurements
typically underestimate a pulsar's distance because of the limited distance to
which this technique works and the consequential strong effect of the Galactic
pulsar distribution (i.e. the original Lutz-Kelker bias), in HI distance
limits, however, the luminosity bias dominates the Lutz-Kelker effect, leading
to overestimated distances because the bright pulsars on which this technique
is applicable are more likely to be nearby given their brightness.Comment: 32 pages, 1 figure, 2 tables; Accepted for publication in the
Astrophysical Journa
A strongly magnetized pulsar within grasp of the Milky Way's supermassive black hole
The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr)
A*. Young, massive stars within 0.5 pc of SgrA* are evidence of an episode of
intense star formation near the black hole a few Myr ago, which might have left
behind a young neutron star traveling deep into SgrA*'s gravitational
potential. On 2013 April 25, a short X-ray burst was observed from the
direction of the Galactic center. Thanks to a series of observations with the
Chandra and the Swift satellites, we pinpoint the associated magnetar at an
angular distance of 2.4+/-0.3 arcsec from SgrA*, and refine the source spin
period and its derivative (P=3.7635537(2) s and \dot{P} = 6.61(4)x10^{-12}
s/s), confirmed by quasi simultaneous radio observations performed with the
Green Bank (GBT) and Parkes antennas, which also constrain a Dispersion Measure
of DM=1750+/-50 pc cm^{-3}, the highest ever observed for a radio pulsar. We
have found that this X-ray source is a young magnetar at ~0.07-2 pc from SgrA*.
Simulations of its possible motion around SgrA* show that it is likely (~90%
probability) in a bound orbit around the black hole. The radiation front
produced by the past activity from the magnetar passing through the molecular
clouds surrounding the Galactic center region, might be responsible for a large
fraction of the light echoes observed in the Fe fluorescence features.Comment: ApJ Letters in pres
- …
