635 research outputs found

    Los piensos medicados para conejos

    Get PDF

    Quantum Zeno-based control mechanism for molecular fragmentation

    Get PDF
    A quantum control mechanism is proposed for molecular fragmentation processes within a scenario grounded on the quantum Zeno effect. In particular, we focus on the van der Waals Ne-Br2_2 complex, which displays two competing dissociation channels via vibrational and electronic predissociation. Accordingly, realistic three dimensional wave packet simulations are carried out by using ab initio interaction potentials recently obtained to reproduce available experimental data. Two numerical models to simulate the repeated measurements are reported and analyzed. It is found that the otherwise fast vibrational predissociation is slowed down in favor of the slow electronic (double fragmentation) predissociation, which is enhanced by several orders of magnitude. Based on these theoretical predictions, some hints to experimentalists to confirm their validity are also proposed.Comment: 4 pages, 3 figure

    The electron-phonon coupling strength at metal surfaces directly determined from the Helium atom scattering Debye-Waller factor

    Get PDF
    A new quantum-theoretical derivation of the elastic and inelastic scattering probability of He atoms from a metal surface, where the energy and momentum exchange with the phonon gas can only occur through the mediation of the surface free-electron density, shows that the Debye-Waller exponent is directly proportional to the electron-phonon mass coupling constant λ\lambda. The comparison between the values of λ\lambda extracted from existing data on the Debye-Waller factor for various metal surfaces and the λ\lambda values known from literature indicates a substantial agreement, which opens the possibility of directly extracting the electron-phonon coupling strength in quasi-2D conducting systems from the temperature or incident energy dependence of the elastic Helium atom scattering intensities.Comment: 14 pages, 2 figures, 1 tabl

    Quantum Zeno and anti-Zeno effects in surface diffusion of interacting adsorbates

    Get PDF
    Surface diffusion of interacting adsorbates is here analyzed within the context of two fundamental phenomena of quantum dynamics, namely the quantum Zeno effect and the anti-Zeno effect. The physical implications of these effects are introduced here in a rather simple and general manner within the framework of non-selective measurements and for two (surface) temperature regimes: high and very low (including zero temperature). The quantum intermediate scattering function describing the adsorbate diffusion process is then evaluated for flat surfaces, since it is fully analytical in this case. Finally, a generalization to corrugated surfaces is also discussed. In this regard, it is found that, considering a Markovian framework and high surface temperatures, the anti-Zeno effect has already been observed, though not recognized as such.Comment: 17 pages, 1 figur

    Quasi-elastic peak lineshapes in adsorbate diffusion on nearly flat surfaces at low coverages: the motional narrowing effect in Xe on Pt(111)

    Full text link
    Quasi-elastic helium atom scattering measurements have provided clear evidence for a two-dimensional free gas of Xe atoms on Pt(111) at low coverages. Increasing the friction due to the surface, a gradual change of the shape of the quasi-elastic peak is predicted and analyzed for this system in terms of the so-called motional narrowing effect. The type of analysis presented here for the quasi-elastic peak should be prior to any deconvolution procedure carried out in order to better extract information from the process, e.g. diffusion coefficients and jump distributions. Moreover, this analysis also provides conditions for the free gas regime different than those reported earlier.Comment: 12 pages, 4 figures (revised version

    Line Shape Broadening in Surface Diffusion of Interacting Adsorbates with Quasielastic He Atom Scattering

    Get PDF
    The experimental line shape broadening observed in adsorbate diffusion on metal surfaces with increasing coverage is usually related to the nature of the adsorbate-adsorbate interaction. Here we show that this broadening can also be understood in terms of a fully stochastic model just considering two noise sources: (i) a Gaussian white noise accounting for the surface friction, and (ii) a shot noise replacing the physical adsorbate-adsorbate interaction potential. Furthermore, contrary to what could be expected, for relatively weak adsorbate-substrate interactions the opposite effect is predicted: line shapes get narrower with increasing coverage.Comment: 4 pages, 2 figures (slightly revised version
    corecore