300 research outputs found

    Rarita-Schwinger Potentials in Quantum Cosmology

    Get PDF
    This paper studies the two-spinor form of the Rarita-Schwinger potentials subject to local boundary conditions compatible with local supersymmetry. The massless Rarita-Schwinger field equations are studied in four-real-dimensional Riemannian backgrounds with boundary. Gauge transformations on the potentials are shown to be compatible with the field equations providing the background is Ricci-flat, in agreement with previous results in the literature. However, the preservation of boundary conditions under such gauge transformations leads to a restriction of the gauge freedom. The recent construction by Penrose of secondary potentials which supplement the Rarita-Schwinger potentials is then applied. The equations for the secondary potentials, jointly with the boundary conditions, imply that the background four-geometry is further restricted to be totally flat.Comment: 23 pages, plain TeX, no figures. The paper has been completely revise

    Euclidean Maxwell Theory in the Presence of Boundaries. II

    Get PDF
    Zeta-function regularization is applied to complete a recent analysis of the quantized electromagnetic field in the presence of boundaries. The quantum theory is studied by setting to zero on the boundary the magnetic field, the gauge-averaging functional and hence the Faddeev-Popov ghost field. Electric boundary conditions are also studied. On considering two gauge functionals which involve covariant derivatives of the 4-vector potential, a series of detailed calculations shows that, in the case of flat Euclidean 4-space bounded by two concentric 3-spheres, one-loop quantum amplitudes are gauge independent and their mode-by-mode evaluation agrees with the covariant formulae for such amplitudes and coincides for magnetic or electric boundary conditions. By contrast, if a single 3-sphere boundary is studied, one finds some inconsistencies, i.e. gauge dependence of the amplitudes.Comment: 24 pages, plain-tex, recently appearing in Classical and Quantum Gravity, volume 11, pages 2939-2950, December 1994. The authors apologize for the delay in circulating the file, due to technical problems now fixe

    Influence of NaNA[3] and CuSO[4] catalytic additives on coal oxidation process kinetic dependencies

    Get PDF
    Experimental studies of bituminous coal and lignite oxidation were conducted with the addition of different nature catalytic additives: NaNO[3] and CuSO[4]. The results showed that added mineral salts led to a noticeable decrease in the coals initial oxidation temperature and reaction acceleration at an early stage of the process

    Influence of Cu(NO[3])[2] initiation additive in twostage mode conditions of coal pyrolytic decomposition

    Get PDF
    Two-stage process (pyrolysis and oxidation) of brown coal sample with Cu(NO[3])[2] additive pyrolytic decomposition was studied. Additive was introduced by using capillary wetness impregnation method with 5% mass concentration. Sample reactivity was studied by thermogravimetric analysis with staged gaseous medium supply (argon and air) at heating rate 10 °C/min and intermediate isothermal soaking. The initiative additive introduction was found to significantly reduce volatile release temperature and accelerate thermal decomposition of sample. Mass-spectral analysis results reveal that significant difference in process characteristics is connected to volatile matter release stage which is initiated by nitrous oxide produced during copper nitrate decomposition

    Research of lignite oxidation kinetic parameters modified by CuSO[4] and NaNO[3] initiation additives

    Get PDF
    An experimental study and subsequent analytical assessment of activation energy change in lignite oxidation process with addition of NaNO3 and CuSO[4] mineral salts were conducted. The results showed that injection of catalytic additives leads to reduction of coal activation energy and reaction initial temperature

    Spin-3/2 potentials in backgrounds with boundary

    Get PDF
    This paper studies the two-spinor form of the Rarita-Schwinger potentials subject to local boundary conditions compatible with local supersymmetry. The massless Rarita-Schwinger field equations are studied in four-real-dimensional Riemannian backgrounds with boundary. Gauge transformations on the potentials are shown to be compatible with the field equations providing the background is Ricci-flat, in agreement with previous results in the literature. However, the preservation of boundary conditions under such gauge transformations leads to a restriction of the gauge freedom. The recent construction by Penrose of secondary potentials which supplement the Rarita-Schwinger potentials is then applied. The equations for the secondary potentials, jointly with the boundary conditions, imply that the background four-geometry is further restricted to be totally flat. The analysis of other gauge transformations confirms that, in the massless case, the only admissible class of Riemannian backgrounds with boundary is totally flat

    Gravitons in One-Loop Quantum Cosmology: Correspondence Between Covariant and Non-Covariant Formalisms

    Get PDF
    The discrepancy between the results of covariant and non-covariant one-loop calculations for higher-spin fields in quantum cosmology is analyzed. A detailed mode-by-mode study of perturbative quantum gravity about a flat Euclidean background bounded by two concentric 3-spheres, including non-physical degrees of freedom and ghost modes, leads to one-loop amplitudes in agreement with the covariant Schwinger-DeWitt method. This calculation provides the generalization of a previous analysis of fermionic fields and electromagnetic fields at one-loop about flat Euclidean backgrounds admitting a well-defined 3+1 decomposition.Comment: 29 pages, latex, recently appearing in Physical Review D, volume 50, pages 6329-6337, November 1994. The authors apologize for the delay in circulating the paper, due to technical problems now fixe

    Quantum origin of the early inflationary Universe

    Get PDF
    We give a detailed presentation of a recently proposed mechanism of generating the energy scale of inflation by loop effects in quantum cosmology. We discuss the quantum origin of the early inflationary Universe from the no-boundary and tunneling quantum states and present a universal effective action algorithm for the distribution function of chaotic inflationary cosmologies in both of these states. The energy scale of inflation is calculated by finding a sharp probability peak in this distribution function for a tunneling model driven by the inflaton field with large negative constant ξ\xi of non-minimal interaction. The sub-Planckian parameters of this peak (the mean value of the corresponding Hubble constant H105mPH\simeq 10^{-5}m_P, its quantum width ΔH/H105\Delta H/H\simeq 10^{-5} and the number of inflationary e-foldings N60N\geq 60) are found to be in good correspondence with the observational status of inflation theory, provided the coupling constants of the theory are constrained by a condition which is likely to be enforced by the (quasi) supersymmetric nature of the sub-Planckian particle physics model.Comment: 43 pages, LaTeX, figures not include

    Relativistic Gauge Conditions in Quantum Cosmology

    Get PDF
    This paper studies the quantization of the electromagnetic field on a flat Euclidean background with boundaries. One-loop scaling factors are evaluated for the one-boundary and two-boundary backgrounds. The mode-by-mode analysis of Faddeev-Popov quantum amplitudes is performed by using zeta-function regularization, and is compared with the space-time covariant evaluation of the same amplitudes. It is shown that a particular gauge condition exists for which the corresponding operator matrix acting on gauge modes is in diagonal form from the beginning. Moreover, various relativistic gauge conditions are studied in detail, to investigate the gauge invariance of the perturbative quantum theory.Comment: 26 pages, plain TeX, no figure

    Gratings in polymeric waveguides

    Get PDF
    Laser-induced formation of polymer Bragg grating filters for Dense Wavelength Division Multiplexing (DWDM) applications is discussed. Acrylate monomers halogenated with both fluorine and chlorine, which possess absorption losses less than 0.25 dB/cm and wide choice of refractive indices (from 1.3 to 1.5) in the 1.5 um telecom wavelength region were used. The monomers are highly intermixable thus permitting to adjust the refractive index of the composition within ±0.0001. Moreover they are photocurable under UV exposure and exhibit high contrast in polymerization. These properties make halogenated acrylates very promising for fabricating polymeric waveguides and photonic circuits. Single-mode polymer waveguides were fabricated on silicon wafers using resistless contact lithography. Submicron index gratings have been written in polymer waveguides using holographic exposure with He-Cd laser beam (325 nm) through a phase mask. Both uniform and apodized gratings have been fabricated. The gratings are stable and are not erased by uniform UV exposure. The waveguide gratings possess narrowband reflection spectra in the 1.5 μm wavelength region of 0.4 nm width, nearly rectangular shape of the stopband and reflectivity R > 99%. The fabricated Bragg grating filters can be used for multiplexing/demultiplexing optical signals in high-speed DWDM optical fiber networks
    corecore