447 research outputs found

    Entropy production of entirely diffusional Laplacian transfer and the possible role of fragmentation of the boundaries

    Full text link
    The entropy production and the variational functional of a Laplacian diffusional field around the first four fractal iterations of a linear self-similar tree (von Koch curve) is studied analytically and detailed predictions are stated. In a next stage, these predictions are confronted with results from numerical resolution of the Laplace equation by means of Finite Elements computations. After a brief review of the existing results, the range of distances near the geometric irregularity, the so-called "Near Field", a situation never studied in the past, is treated exhaustively. We notice here that in the Near Field, the usual notion of the active zone approximation introduced by Sapoval et al. is strictly inapplicable. The basic new result is that the validity of the active-zone approximation based on irreversible thermodynamics is confirmed in this limit, and this implies a new interpretation of this notion for Laplacian diffusional fields.Comment: 21 pages, 12 Figure

    Many-Body Expansion Dynamics of a Bose-Fermi Mixture Confined in an Optical Lattice

    Get PDF
    We unravel the correlated non-equilibrium dynamics of a mass balanced Bose-Fermi mixture in a one-dimensional optical lattice upon quenching an imposed harmonic trap from strong to weak confinement. Regarding the system's ground state, the competition between the inter and intraspecies interaction strength gives rise to the immiscible and miscible phases characterized by negligible and complete overlap of the constituting atomic clouds respectively. The resulting dynamical response depends strongly on the initial phase and consists of an expansion of each cloud and an interwell tunneling dynamics. For varying quench amplitude and referring to a fixed phase a multitude of response regimes is unveiled, being richer within the immiscible phase, which are described by distinct expansion strengths and tunneling channels.Comment: 13 pages, 7 figure

    Analytical treatment of the interaction quench dynamics of two bosons in a two-dimensional harmonic trap

    Get PDF
    We investigate the quantum dynamics of two bosons, trapped in a two-dimensional harmonic trap, upon quenching arbitrarily their interaction strength thereby covering the entire energy spectrum. Utilizing the exact analytical solution of the stationary system we derive a closed analytical form of the expansion coefficients of the time-evolved two-body wavefunction, whose dynamics is determined by an expansion over the postquench eigenstates. The emergent dynamical response of the system is analyzed in detail by inspecting several observables such as the fidelity, the reduced one-body densities, the radial probability density of the relative wavefunction in both real and momentum space as well as the Tan contact unveiling the existence of short range two-body correlations. It is found that when the system is initialized in its bound state it is perturbed in the most efficient manner compared to any other initial configuration. Moreover, starting from an interacting ground state the two-boson response is enhanced for quenches towards the non-interacting limit.Comment: 19 pages, 16 figure

    Mode coupling of interaction quenched ultracold few-boson ensembles in periodically driven lattices

    Get PDF
    The out-of-equilibrium dynamics of interaction quenched finite ultracold bosonic ensembles in periodically driven one-dimensional optical lattices is investigated. It is shown that periodic driving enforces the bosons in the outer wells of the finite lattice to exhibit out-of-phase dipole-like modes, while in the central well the atomic cloud experiences a local breathing mode. The dynamical behavior is investigated with varying driving frequency, revealing a resonant-like behavior of the intra-well dynamics. An interaction quench in the periodically driven lattice gives rise to admixtures of different excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. We observe then multiple resonances between the inter- and intra-well dynamics at different quench amplitudes, with the position of the resonances being tunable via the driving frequency. Our results pave the way for future investigations on the use of combined driving protocols in order to excite different inter- and intra-well modes and to subsequently control them.Comment: 18 pages, 12 figure

    Coherent state path integrals in the continuum

    Get PDF
    We discuss the time-continuous path integration in the coherent states basis in a way that is free from inconsistencies. Employing this notion we reproduce known and exact results working directly in the continuum. Such a formalism can set the basis to develop perturbative and non-perturbative approximations already known in the quantum field theory community. These techniques can be proven useful in a great variety of problems where bosonic Hamiltonians are used.Comment: To appear in "Physical Review A

    Quench Dynamics of Two One-Dimensional Harmonically Trapped Bosons Bridging Attraction and Repulsion

    Full text link
    We unravel the nonequilibrium quantum dynamics of two harmonically confined bosons in one spatial dimension when performing an interaction quench from finite repulsive to attractive interaction strengths and vice versa. A closed analytical form of the expansion coefficients of the time-evolved two-body wavefunction is derived, while its dynamics is determined in terms of an expansion over the postquench eigenstates. For both quench scenarios the temporal evolution is analyzed by inspecting the one- and two-body reduced density matrices and densities, the momentum distribution and the fidelity. Resorting to the fidelity spectrum and the eigenspectrum we identify the dominant eigenstates of the system that govern the dynamics. Monitoring the dynamics of the above-mentioned observables we provide signatures of the energetically higher-lying states triggered by the quench.Comment: 14 pages, 14 figure

    Correlated quantum dynamics of two quenched fermionic impurities immersed in a Bose-Einstein Condensate

    Get PDF
    We unravel the nonequilibrium dynamics of two fermionic impurities immersed in a one-dimensional bosonic gas following an interspecies interaction quench from weak to strong repulsions. Monitoring the temporal evolution of the single-particle density of each species we reveal the existence of four distinct dynamical regimes. For weak interspecies repulsions both species either perform a breathing motion or the impurity density splits into two parts which interact and disperse within the bosonic cloud. Turning to strong interactions we observe the formation of dark-bright states within the mean-field approximation. However, the correlated dynamics shows that the fermionic density splits into two repelling density peaks which either travel towards the edges of the bosonic cloud where they equilibrate or they approach an almost steady state propagating robustly within the bosonic gas which forms density dips at the same location. For these strong interspecies interactions an energy transfer process from the impurities to their environment occurs at the many-body level, while a periodic energy exchange from the bright states (impurities) to the bosonic species is identified in the absence of correlations. Finally, inspecting the one-body coherence function for strong interactions enables us to conclude on the spatial localization of the quench-induced fermionic density humps.Comment: 18 pages, 12 figure

    Phase Separation Dynamics Induced by an Interaction Quench of a Correlated Fermi-Fermi Mixture in a Double Well

    Get PDF
    We explore the interspecies interaction quench dynamics of ultracold spin-polarized few-body mass balanced Fermi-Fermi mixtures confined in a double-well with an emphasis on the beyond Hartree-Fock correlation effects. It is shown that the ground state of particle imbalanced mixtures exhibits a symmetry breaking of the single-particle density for strong interactions in the Hartree-Fock limit, which is altered within the many-body approach. Quenching the interspecies repulsion towards the strongly interacting regime the two species phase separate within the Hartree-Fock approximation while remaining miscible in the many-body treatment. Despite their miscible character on the one-body level the two species are found to be strongly correlated and exhibit a phase separation on the two-body level that suggests the anti-ferromagnetic like behavior of the few-body mixture. For particle balanced mixtures we show that an intrawell fragmentation (filamentation) of the density occurs both for the ground state as well as upon quenching from weak to strong interactions, a result that is exclusively caused by the presence of strong correlations. Inspecting the two-body correlations a phase separation of the two species is unveiled being a precursor towards an anti-ferromagnetic state. Finally, we simulate in-situ single-shot measurements and showcase how our findings can be retrieved by averaging over a sample of single-shot images.Comment: 15 pages, 9 figure

    Correlation Effects in the Quench-Induced Phase Separation Dynamics of a Two-Species Ultracold Quantum Gas

    Get PDF
    We explore the quench dynamics of a binary Bose-Einstein condensate crossing the miscibility-immiscibility threshold and vice versa, both within and in particular beyond the mean-field approximation. Increasing the interspecies repulsion leads to the filamentation of the density of each species, involving shorter wavenumbers and longer spatial scales in the many-body approach. These filaments appear to be strongly correlated and exhibit domain-wall structures. Following the reverse quench process multiple dark-antidark solitary waves are spontaneously generated and subsequently found to decay in the many-body scenario. We simulate single-shot images to connect our findings to possible experimental realizations. Finally, the growth rate of the variance of a sample of single-shots probes the degree of entanglement inherent in the system.Comment: 17 pages, 9 Figure

    Quantum dynamical response of ultracold few boson ensembles in finite optical lattices to multiple interaction quenches

    Get PDF
    The correlated non-equilibrium quantum dynamics following a multiple interaction quench protocol for few-bosonic ensembles confined in finite optical lattices is investigated. The quenches give rise to an interwell tunneling and excite the cradle and a breathing mode. Several tunneling pathways open during the time interval of increased interactions, while only a few occur when the system is quenched back to its original interaction strength. The cradle mode, however, persists during and in between the quenches, while the breathing mode possesses dinstinct frequencies. The occupation of excited bands is explored in detail revealing a monotonic behavior with increasing quench amplitude and a non-linear dependence on the duration of the application of the quenched interaction strength. Finally, a periodic population transfer between momenta for quenches of increasing interaction is observed, with a power-law frequency dependence on the quench amplitude. Our results open the possibility to dynamically manipulate various excited modes of the bosonic system.Comment: 13 pages, 9 figure
    corecore