7,787 research outputs found

    Rotation of Coulomb crystals in a magnetized inductively coupled complex plasma

    Get PDF
    Under suitable conditions, micron-sized dust particles introduced into inductively coupled argon plasma form a stable microscopic crystal lattice, known as a Coulomb (or plasma) crystal. In the experiment described, an external axial magnetic field was applied to various configurations of Coulomb crystal, including small crystal lattices consisting of one to several particles, and large crystal lattices with many hundreds of particles. The crystals were observed to rotate collectively under the influence of the magnetic field. This paper describes the experimental procedures and the preliminary results of this investigation

    Ionized Nitrogen Mono-hydride Bands are Identified in the Pre-solar and Carbonado Diamond Spectra

    Full text link
    None of the well established Nitrogen related IR absorption bands, common in synthetic and terrestrial diamonds, have been identified in the pre-solar diamond spectra. In the carbonado diamond spectra only the single nitrogen impurity (C centre) is identified and the assignments of the rest of the nitrogen-related bands are still debated. It is speculated that the unidentified bands in the Nitrogen absorption region are not induced by Nitrogen but rather by Nitrogen-hydrides because in the interstellar environment Nitrogen reacts with Hydrogen and forms NH+; NH; NH2; NH3. Among these Hydrides the electronic configuration of NH+ is the closest to Carbon. Thus this ionized Nitrogen-mono-hydride is the best candidate to substitute Carbon in the diamond structure. The bands of the substitutional NH+ defect are deduced by red shifting the irradiation induced N+ bands due to the mass of the additional Hydrogen. The six bands of the NH+ defects are identified in both the pre-solar and the carbonado diamond spectra. The new assignments identify all of the nitrogen-related bands in the spectra, indicating that pre-solar and carbonado diamonds contain only single nitrogen impurities

    Predicting software project effort: A grey relational analysis based method

    Get PDF
    This is the post-print version of the final paper published in Expert Systems with Applications. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.The inherent uncertainty of the software development process presents particular challenges for software effort prediction. We need to systematically address missing data values, outlier detection, feature subset selection and the continuous evolution of predictions as the project unfolds, and all of this in the context of data-starvation and noisy data. However, in this paper, we particularly focus on outlier detection, feature subset selection, and effort prediction at an early stage of a project. We propose a novel approach of using grey relational analysis (GRA) from grey system theory (GST), which is a recently developed system engineering theory based on the uncertainty of small samples. In this work we address some of the theoretical challenges in applying GRA to outlier detection, feature subset selection, and effort prediction, and then evaluate our approach on five publicly available industrial data sets using both stepwise regression and Analogy as benchmarks. The results are very encouraging in the sense of being comparable or better than other machine learning techniques and thus indicate that the method has considerable potential.National Natural Science Foundation of Chin

    Fast TeV variability from misaligned minijets in the jet of M87

    Full text link
    The jet of the radio galaxy M87 is misaligned, resulting in a Doppler factor delta~1 for emission of plasma moving parallel to the jet. This makes the observed fast TeV flares on timescales of t_v~5R_g/c harder to understand as emission from the jet. In previous work, we have proposed a jets-in-a-jet model for the ultra-fast TeV flares with t_v<<R_g/c seen in Mrk 501 and PKS 2155-304. Here, we show that about half of the minijets beam their emission outside the jet cone. Minijets emitting off the jet axis result in rapidly evolving TeV (and maybe lower energy) flares that can be observed in nearby radio galaxies. The TeV flaring from M87 fits well into this picture, if M87 is a misaligned blazar.Comment: 9 pages, 5 figures, minor changes, MNRAS, accepte

    Induction of high-affinity IgE receptor on lung dendritic cells during viral infection leads to mucous cell metaplasia

    Get PDF
    Respiratory viral infections are associated with an increased risk of asthma, but how acute Th1 antiviral immune responses lead to chronic inflammatory Th2 disease remains undefined. We define a novel pathway that links transient viral infection to chronic lung disease with dendritic cell (DC) expression of the high-affinity IgE receptor (FcεRIα). In a mouse model of virus-induced chronic lung disease, in which Sendai virus triggered a switch to persistent mucous cell metaplasia and airway hyperreactivity after clearance of replicating virus, we found that FceRIa(−/−) mice no longer developed mucous cell metaplasia. Viral infection induced IgE-independent, type I IFN receptor–dependent expression of FcεRIα on mouse lung DCs. Cross-linking DC FcεRIα resulted in the production of the T cell chemoattractant CCL28. FceRIa(−/−) mice had decreased CCL28 and recruitment of IL-13–producing CD4(+) T cells to the lung after viral infection. Transfer of wild-type DCs to FceRIa(−/−) mice restored these events, whereas blockade of CCL28 inhibited mucous cell metaplasia. Therefore, lung DC expression of FcεRIα is part of the antiviral response that recruits CD4(+) T cells and drives mucous cell metaplasia, thus linking antiviral responses to allergic/asthmatic Th2 responses

    Isospin-Violating Meson-Nucleon Vertices as an Alternate Mechanism of Charge-Symmetry Breaking

    Get PDF
    We compute isospin-violating meson-nucleon coupling constants and their consequent charge-symmetry-breaking nucleon-nucleon potentials. The couplings result from evaluating matrix elements of quark currents between nucleon states in a nonrelativistic constituent quark model; the isospin violations arise from the difference in the up and down constituent quark masses. We find, in particular, that isospin violation in the omega-meson--nucleon vertex dominates the class IV CSB potential obtained from these considerations. We evaluate the resulting spin-singlet--triplet mixing angles, the quantities germane to the difference of neutron and proton analyzing powers measured in elastic np\vec{n}-\vec{p} scattering, and find them commensurate to those computed originally using the on-shell value of the ρ\rho-ω\omega mixing amplitude. The use of the on-shell ρ\rho-ω\omega mixing amplitude at q2=0q^2=0 has been called into question; rather, the amplitude is zero in a wide class of models. Our model possesses no contribution from ρ\rho-ω\omega mixing at q2=0q^2=0, and we find that omega-meson exchange suffices to explain the measured npn-p analyzing power difference~at~183 MeV.Comment: 20 pages, revtex, 3 uuencoded PostScript figure

    Search for a strongly decaying neutral charmed pentaquark

    Full text link
    We present a search for a charmed pentaquark decaying strongly to D()pD^{(*)-}p. Finding no evidence for such a state, we set limits on the cross section times branching ratio relative to DD^{*-} and DD^- under particular assumptions about the production mechanism.Comment: To be published in Physics Letters
    corecore