985 research outputs found
The Future\u27s Lookin\u27 Good
In lieu of an abstract, below is the essay\u27s first paragraph.
On my 21st birthday I looked back on my adolescent years and wondered what my future held. What would I have to look forward to
How Old Are You Now?
In lieu of an abstract, below is the essay\u27s first paragraph.
She struggled to her feet, mind clouded with bewilderment. It was nothing new to her. Same scene every morning or day, what ever time it was when she came to. It became her routine- at night fade to unconsciousness feeling found, in the morning wake to the sting of reality feeling terribly lost. Today was different. Today the sting hurt more, today she needed a change. It is her birthday
Anisotropic compression in the high pressure regime of pure and Cr-doped vanadium dioxide
We present structural studies of VCrO (pure, 0.7% and 2.5% Cr
doped) compounds at room temperature in a diamond anvil cell for pressures up
to 20 GPa using synchrotron x-ray powder diffraction. All the samples studied
show a persistence of the monoclinic symmetry between 4 and 12 GPa. Above
12 GPa, the monoclinic symmetry changes to isostructural phase
(space group ) with a significant anisotropy in lattice compression of
the - plane of the phase. This behavior can be reconciled
invoking the pressure induced charge-delocalization
Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products
International audienceIn the context of assessing potential risks of engineered nanoparticles (ENPs), life cycle thinking can represent a holistic view on the impacts of ENPs through the entire value chain of nano-enhanced products from production, through use, and finally to disposal. Exposure to ENPs in consumer or environmental settings may either be to the original, pristine ENPs, or more likely, to ENPs that have been incorporated into products, released, aged and transformed. Here, key product-use related aging and transformation processes affecting ENPs are reviewed. The focus is on processes resulting in ENP release and on the transformation(s) the released particles undergo in the use and disposal phases of its product life cycle for several nanomaterials (Ag, ZnO, TiO 2 , carbon nanotubes, CeO 2 , SiO 2 etc.). These include photochemical transformations, oxidation and reduction, dissolution, precipitation , adsorption and desorption, combustion, abrasion and biotransformation, among other biogeochemical processes. To date, few studies have tried to establish what changes the ENPs undergo when they are incorporated into, and released from, products. As a result there is major uncertainty as to the state of many ENPs following their release because much of current testing on pristine ENPs may not be fully relevant for risk assessment purposes. The goal of this present review is therefore to use knowledge on the life cycle of nano-products to derive possible transformations common ENPs in nano-products may undergo based on how these products will be used by the consumer and eventually discarded. By determining specific gaps in knowledge of the ENP transformation process, this approach should prove useful in narrowing the number of physical experiments that need to be conducted and illuminate where more focused effort can be placed
Measurement of the dynamic charge response of materials using low-energy, momentum-resolved electron energy-loss spectroscopy (M-EELS)
One of the most fundamental properties of an interacting electron system is
its frequency- and wave-vector-dependent density response function, . The imaginary part, , defines the
fundamental bosonic charge excitations of the system, exhibiting peaks wherever
collective modes are present. quantifies the electronic compressibility
of a material, its response to external fields, its ability to screen charge,
and its tendency to form charge density waves. Unfortunately, there has never
been a fully momentum-resolved means to measure at the
meV energy scale relevant to modern elecronic materials. Here, we demonstrate a
way to measure with quantitative momentum resolution by applying
alignment techniques from x-ray and neutron scattering to surface
high-resolution electron energy-loss spectroscopy (HR-EELS). This approach,
which we refer to here as "M-EELS," allows direct measurement of with meV resolution while controlling the momentum with an accuracy
better than a percent of a typical Brillouin zone. We apply this technique to
finite-q excitations in the optimally-doped high temperature superconductor,
BiSrCaCuO (Bi2212), which exhibits several phonons
potentially relevant to dispersion anomalies observed in ARPES and STM
experiments. Our study defines a path to studying the long-sought collective
charge modes in quantum materials at the meV scale and with full momentum
control.Comment: 26 pages, 10 sections, 7 figures, and an appendi
Assessing a Hydrodynamic Description for Instabilities in Highly Dissipative, Freely Cooling Granular Gases
An intriguing phenomenon displayed by granular flows and predicted by
kinetic-theory-based models is the instability known as particle "clustering,"
which refers to the tendency of dissipative grains to form transient, loose
regions of relatively high concentration. In this work, we assess a
modified-Sonine approximation recently proposed [Garz\'o et al., Physica A 376,
94 (2007)] for a granular gas via an examination of system stability. In
particular, we determine the critical length scale associated with the onset of
two types of instabilities -vortices and clusters- via stability analyses of
the Navier-Stokes-order hydrodynamic equations by using the expressions of the
transport coefficients obtained from both the standard and the modified-Sonine
approximations. We examine the impact of both Sonine approximations over a
range of solids fraction \phi <0.2 for small restitution coefficients
e=0.25--0.4, where the standard and modified theories exhibit discrepancies.
The theoretical predictions for the critical length scales are compared to
molecular dynamics (MD) simulations, of which a small percentage were not
considered due to inelastic collapse. Results show excellent quantitative
agreement between MD and the modified-Sonine theory, while the standard theory
loses accuracy for this highly dissipative parameter space. The modified theory
also remedies a (highdissipation) qualitative mismatch between the standard
theory and MD for the instability that forms more readily. Furthermore, the
evolution of cluster size is briefly examined via MD, indicating that
domain-size clusters may remain stable or halve in size, depending on system
parameters.Comment: 4 figures; to be published in Phys. Rev.
Population Inversion in Monolayer and Bilayer Graphene
The recent demonstration of saturable absorption and negative optical
conductivity in the Terahertz range in graphene has opened up new opportunities
for optoelectronic applications based on this and other low dimensional
materials. Recently, population inversion across the Dirac point has been
observed directly by time- and angle-resolved photoemission spectroscopy
(tr-ARPES), revealing a relaxation time of only ~ 130 femtoseconds. This
severely limits the applicability of single layer graphene to, for example,
Terahertz light amplification. Here we use tr-ARPES to demonstrate long-lived
population inversion in bilayer graphene. The effect is attributed to the small
band gap found in this compound. We propose a microscopic model for these
observations and speculate that an enhancement of both the pump photon energy
and the pump fluence may further increase this lifetime.Comment: 18 pages, 6 figure
- …
