425 research outputs found
[18F]FE@SNAP—a specific PET tracer for melanin-concentrating hormone receptor 1 imaging?
BACKGROUND: The melanin-concentrating hormone receptor 1 (MCHR1), which is highly expressed in the lateral hypothalamus, plays a key role in energy homeostasis, obesity and other endocrine diseases. Hence, there is a major interest in in vivo imaging of this receptor. A PET tracer would allow non-invasive in vivo visualization and quantification of the MCHR1. The aim of the study was the ex vivo evaluation of the MCHR1 ligand [(18)F]FE@SNAP as a potential PET tracer for the MCHR1. METHODS: [(18)F]FE@SNAP was injected directly into the jugular vein of awake naïve rats for ex vivo brain autoradiography, biodistribution and additional blood metabolite analysis. Blocking experiments were conducted using the unlabeled MCHR1 ligand SNAP-7941. RESULTS: A high uptake of [(18)F]FE@SNAP was observed in the lateral hypothalamus and the ventricular system. Both regions were significantly blocked by SNAP-7941. Biodistribution evinced the highest uptake in the kidneys, adrenals, lung and duodenum. Specific blocking with SNAP-7941 led to a significant tracer reduction in the heart and adrenals. In plasma samples, 47.73 ± 6.1 % of a hydrophilic radioactive metabolite was found 45 min after tracer injection. CONCLUSIONS: Since [(18)F]FE@SNAP uptake was significantly blocked in the lateral hypothalamus, there is strong evidence that [(18)F]FE@SNAP is a highly suitable agent for specific MCHR1 imaging in the central nervous system. Additionally, this finding is supported by the specific blocking in the ventricular system, where the MCHR1 is expressed in the ependymal cells. These findings suggest that [(18)F]FE@SNAP could serve as a useful imaging and therapy monitoring tool for MCHR1-related pathologies
The Potential Role of the MCHR1 in Diagnostic Imaging: Facts and Trends
The neuropeptide melanin-concentrating hormone (MCH) plays a key role in energy maintenance by decreasing energy expenditure and stimulating feeding behavior. Furthermore, it is involved in diabetes, gut inflammation, sleep, depression, and cilia beat function. The biological function of MCH is mediated by two G-protein coupled receptors, MCH receptor 1 and 2 (MCHR1 and MCHR2). Since only the MCHR1 is functional in rodents, the physiological importance of MCHR2 remains unknown due to the lack of appropriate animal models. The involvement of the MCHergic system in a variety of pathologies, especially endocrinological diseases, such as obesity and diabetes, makes it interesting as a new target to treat human disorders. Many pharmaceutical companies have pursued the development of MCHR1 antagonists for the treatment of obesity. Moreover, positron emission tomography (PET) tracers targeting the MCHR1 have been developed in order to gain a deeper understanding of the role and distribution of the MCHR1. As a high-end technique, PET allows noninvasive in vivo visualization and quantification of receptor systems, as well as monitoring and following hormone receptor status and related pathologies. Therefore, a MCHR1 PET tracer could help to guide pharmacological intervention via the MCHR1
Folgen und Reihen - ein Vergleich von verschiedenen Schultypen (AHS, HTL, HAK) anhand einer Schulbuchanalyse
Es werden verschiedene Schulbücher von AHS, HAK und HTL miteinander zu dem Thema "Folgen und Reihen" verglichen und Unterschiede verdeutlicht
Highlighting the versatility of the Tracerlab synthesis modules. Part 2: fully automated production of [ 11 C]‐labeled radiopharmaceuticals using a Tracerlab FX C‐Pro
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89445/1/jlcr1937.pd
Abstracts of the 33rd International Austrian Winter Symposium : Zell am See, Austria. 24-27 January 2018.
In vivo P-glycoprotein function before and after epilepsy surgery
Objectives: To study the functional activity of the multidrug efflux transporter P-glycoprotein (Pgp) at the blood-brain barrier of patients with temporal lobe epilepsy using (R)-[11C]verapamil (VPM)-PET before and after temporal lobe surgery to assess whether postoperative changes in seizure frequency and antiepileptic drug load are associated with changes in Pgp function.
Methods: Seven patients with drug-resistant temporal lobe epilepsy underwent VPM-PET scans pre- and postsurgery. Patients were followed up for a median of 6 years (range 4–7) after surgery. Pgp immunoreactivity in surgically resected hippocampal specimens was determined with immunohistochemistry.
Results: Optimal surgical outcome, defined as seizure freedom and withdrawal of antiepileptic drugs, was associated with higher temporal lobe Pgp function before surgery, higher Pgp-positive staining in surgically resected hippocampal specimens, and reduction in global Pgp function postoperatively, compared with nonoptimal surgery outcome.
Conclusions: The data from our pilot study suggest that Pgp overactivity in epilepsy is dynamic, and complete seizure control and elimination of antiepileptic medication is associated with reversal of overactivity, although these findings will require confirmation in a larger patient cohort
Prospective evaluation of the performance of [^{68}Ga]Ga-PSMA-11 PET/CT(MRI) for lymph node staging in patients undergoing superextended salvage lymph node dissection after radical prostatectomy
Purpose
To assess the accuracy of [⁶⁸Ga]-PSMA-11 PET/CT or [⁶⁸Ga]-PSMA-11 PET/MRI (PSMA-11 PET/CT(MRI)) for lymph node (LN) staging using salvage LN dissection (SLND) in patients with biochemical recurrence (BCR) after radical prostatectomy (RP).
Patients and methods
In a prospective study, 65 consecutive patients who developed BCR after RP underwent SLND after PSMA-11 PET/CT(MRI) between 2014 and 2018. Extended SLND up to the inferior mesenteric artery was performed in all patients. Regional and template-based correlations between the presence of LN metastases on histopathology and whole-body PSMA-11 PET/CT(MRI) results were evaluated. The diagnostic accuracy of PSMA-11 PET/CT(MRI) was also evaluated in relation to PSA level at the time of SLND.
Results
The median age of the patients at the time of SLND was 65 years (IQR 63–69 years) and the median PSA level was 1.4 ng/ml (IQR 0.8–2.9 ng/ml). Before SLND, 50 patients (77%) had additional therapy after RP (26.2% androgen-deprivation therapy and 50.8% radiotherapy). The median number of LNs removed on SLND was 40 (IQR 33–48) and the median number of positive nodes was 4 (IQR 2–6). LN metastases were seen in 13.8% of resected LNs (317 of 2,292). LNs positive on PSMA-11 PET/CT(MRI) had a median diameter of 7.2 mm (IQR 5.3–9 mm). Metastatic LNs in regions negative on PSMA-11 PET had a median diameter of 3.4 mm (IQR 2.1–5.4 mm). In a regional analysis, the sensitivity of PSMA-11 PET/CT(MRI) ranged from 72% to 100%, and the specificity from 96% to 100%. Region-specific positive and negative predictive values ranged from 95% to 100% and 93% to 100%, respectively.
Conclusion
PSMA-11 PET/CT(MRI) has a very good performance for the identification of LN metastases in patients with BCR after RP. The high diagnostic accuracy in the regional and subregional analyses demonstrates the potential of this approach to enable a region-directed instead of a complete bilateral therapeutic intervention. The performance of PSMA-11 PET/CT(MRI) is dependent on the PSA level and the size of the metastatic deposit
Preclinical In Vitro
Molecular imaging probes such as PET-tracers have the potential to improve the accuracy of tumor characterization by directly visualizing the biochemical situation. Thus, molecular changes can be detected early before morphological manifestation. The A3 adenosine receptor (A3AR) is described to be highly expressed in colon cancer cell lines and human colorectal cancer (CRC), suggesting this receptor as a tumor marker. The aim of this preclinical study was the evaluation of [F]FE@SUPPY as a PET-tracer for CRC using in vitro imaging and in vivo PET imaging. First, affinity and selectivity of FE@SUPPY and its metabolites were determined, proving the favorable binding profile of FE@SUPPY. The human adenocarcinoma cell line HT-29 was characterized regarding its hA3AR expression and was subsequently chosen as tumor graft. Promising results regarding the potential of [F]FE@SUPPY as a PET-tracer for CRC imaging were obtained by autoradiography as 2.3-fold higher accumulation of [F]FE@SUPPY was found in CRC tissue compared to adjacent healthy colon tissue from the same patient. Nevertheless, first in vivo studies using HT-29 xenografts showed insufficient tumor uptake due to (1) poor conservation of target expression in xenografts and (2) unfavorable pharmacokinetics of [F]FE@SUPPY in mice. We therefore conclude that HT-29 xenografts are not adequate to visualize hA3ARs using [F]FE@SUPPY.(VLID)481541
- …
