502 research outputs found

    Probing GHz Gravitational Waves with Graviton-magnon Resonance

    Full text link
    A novel method for extending frequency frontier in gravitational wave observations is proposed. It is shown that gravitational waves can excite a magnon. Thus, gravitational waves can be probed by a graviton-magnon detector which measures resonance fluorescence of magnons. Searching for gravitational waves with a wave length λ\lambda by using a ferromagnetic sample with a dimension ll, the sensitivity of the graviton-magnon detector reaches spectral densities, around $5.4 \times 10^{-22} \times (\frac{l}{\lambda /2\pi})^{-2} \ [{\rm Hz}^{-1/2}]at14GHzand at 14 GHz and 8.6 \times 10^{-21} \times (\frac{l}{\lambda /2\pi})^{-2} \ [{\rm Hz}^{-1/2}]$ at 8.2 GHz, respectively.Comment: 5 pages, 1 figure, minor change

    Performance of a micro-TPC for a time-resolved neutron PSD

    Full text link
    We report on the performance of a micro-TPC with a micro pixel chamber(μ\mu-PIC) readout for a time-resolved neutron position-sensitive detector(PSD). Three-dimensional tracks and the Bragg curves of protons with energies of around 1 MeV were clearly detected by the micro-TPC. More than 95% of gamma-rays of 511 keV were found to be discriminated by simple analysis. Simulation studies showed that the total track length of proton and triton emitted from the 3He\rm {}^{3}He(n,p(573 keV))3H(191keV)\rm {}^{3}H(191 keV) reaction is about 1.2 cm, and that both particles have large energy losses (>200keV/cm\rm > 200 keV/cm) in 1 atm Ar+C2H6(10\rm C_{2}H_{6}(10%)+3{}^{3}He(<1< 1%). These values suit the current performance of the micro-TPC, and we conclude that a time-resolved neutron PSD with spatial resolution of sub-millimeters shall be developed as an application of the micro-TPC.Comment: 13 pages, 10 figures, to appear in NIM

    Development of an advanced Compton camera with gaseous TPC and scintillator

    Full text link
    A prototype of the MeV gamma-ray imaging camera based on the full reconstruction of the Compton process has been developed. This camera consists of a micro-TPC that is a gaseous Time Projection Chamber (TPC) and scintillation cameras. With the information of the recoil electrons and the scattered gamma-rays, this camera detects the energy and incident direction of each incident gamma-ray. We developed a prototype of the MeV gamma-ray camera with a micro-TPC and a NaI(Tl) scintillator, and succeeded in reconstructing the gamma-rays from 0.3 MeV to 1.3 MeV. Measured angular resolutions of ARM (Angular Resolution Measure) and SPD (Scatter Plane Deviation) for 356 keV gamma-rays were 1818^\circ and 3535^\circ, respectively.Comment: 4 pages, 5 figures. Proceedings of the 6th International Workshop On Radiation Imaging Detector

    Simulation study of electron drift and gas multiplication in Micro Pixel Chamber

    Full text link
    The physical processes of charge collection and gas multiplication of a Micro Pixel Chamber (mu-PIC) were studied in detail using a three-dimensional simulation. The collection efficiencies of primary electrons and gas multiplication factors were calculated for several electrode structures. Based on those studies, we analyzed the optimization of the electrode structure of the mu-PIC, in order to obtain a high gas gain of more than 10^4 and a simultaneous suppression of discharges. Consequently, we found that these characteristics strongly depend on the substrate thickness and the anode diameter of the mu-PIC. In addition, a gas gain of 10^5 would be expected for a mu-PIC having a thick substrate of > 150um.Comment: 16 pages, 14 figures, Submitted to Nucl. Instr. Methods

    Performance of the TPC with Micro Pixel Chamber Readout: micro-TPC

    Get PDF
    Micro-TPC, a time projection chamber(TPC) with micro pixel chamber(μ\mu-PIC) readout was developed for the detection of the three-dimensional fine(sub-m illimeter) tracks of charged particles. We developed a two-dimensional position sensitive gaseous detector, or the μ\mu-PIC, with the detection area of 10×\times10 cm2{}^{2} and 65536 anode electrodes of 400 μ\mum pitch. We achieved the gas gain of over 10000 without any other multipliers. With the pipe-line readout system specially developed for the μ\mu-PIC, we detected X-rays at the rate as high as 7.7 Mcps. We attached a drift cage with an 8 cm drift length to the μ\mu-PIC and developed a micro-TPC. We measured the basic performances of the micro-TPC and took three-dimensional tracks of electrons. We also developed a prototype of the MeV gamma-ray imaging detector which is a hybrid of the micro-TPC and NaI(Tl) scintillators and confirmed its concept by reconstructing the obtained data.Comment: 6 pages 16 figures, submitted for IEEE/TNS 200

    Pulse-Shape Discrimination of CaF2(Eu)

    Full text link
    We measured the decay time of the scintillation pulses produced by electron and nuclear recoils in CaF2(Eu) by a new fitting method. In the recoil energy region 5-30 keVee, we found differences of the decay time between electron and nuclear recoil events. In the recoil energy region above 20 keVee, we found that the decay time is independent of the recoil energy.Comment: 10 pages, 4 figure

    First Results from Dark Matter Search Experiment in the Nokogiriyama Underground Cell

    Get PDF
    An experiment to search for hypothetical particle dark matter using cryogenic thermal detector, or bolometer is ongoing. The bolometer consists of eight pieces of 21 g LiF absorbers and sensitive NTD germanium thermistors attached to them and is installed in the Nokogiriyama underground cell which is a shallow depth site (15\sim 15 m w.e.). We report on the results from the first running for about ten days using this arrayed bolometer system together with appropriate shieldings and muon veto counters. From the obtained energy spectra the exclusion limits for the cross section of the elastic neutralino-proton scattering are derived under commonly accepted astrophysical assumptions. The sensitivity for the light neutralino with a mass below 5 GeV is improved by this work.Comment: 8 pages, Revtex, 4 figure
    corecore