4,330 research outputs found
Tribolgy of selected ceramics at temperatures to 900 deg C
Results of fundamental and focused research on the tribological properties of ceramics are discussed. The basic friction and wear characteristics are given for ceramics of interest for use in gas trubine, adiabatic diesel, and Stirling engine applications. The importance of metal oxides in ceramic/metal sliding combinations is illustrated. The formulation and tribological additives are described. Friction and wear date are given for carbide and oxide-based composite coatings for temperatures to at least 900 C
Friction and wear of plasma-deposited diamond films
Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen
An extracellular serine protease produced by Vibrio vulnificus NCIMB 2137, a metalloprotease-gene negative strain isolated from a diseased eel
Vibrio vulnificus is a ubiquitous estuarine microorganism but causes fatal systemic infections in immunocompromised humans, cultured eels or shrimps. An extracellular metalloprotease VVP/VvpE has been reported to be a potential virulence factor of the bacterium; however, a few strains isolated from a diseased eel or shrimp were recently found to produce a serine protease termed VvsA, but not VVP/VvpE. In the present study, we found that these strains had lost the 80 kb genomic region including the gene encoding VVP/VvpE. We also purified VvsA from the culture supernatant through ammonium sulfate fractionation, gel filtration and ion-exchange column chromatography, and the enzyme was demonstrated to be a chymotrypsin-like protease, as well as those from some vibrios. The gene vvsA was shown to constitute an operon with a downstream gene vvsB, and several Vibrio species were found to have orthologues of vvsAB. These findings indicate that the genes vvp/vvpE and vvsAB might be mobile genetic elements
Recommended from our members
Data assimilation insights on selecting the most valuable atmospheric measurements
We discuss how objective guidance on selecting the most valuable atmospheric measurements on future Mars spacecraft missions can be provided through already developed Martian atmospheric data assimilation systems, and in particular through Observing System Simulation Experiments (OSSEs) which are widely used to design instruments for the Earth’s atmosphere
Mechanical strength and tribological behavior of ion-beam deposited boron nitride films on non-metallic substrates
An investigation was conducted to examine the mechanical strength and tribological properties of boron nitride (BN) films ion-beam deposited on silicon (Si), fused silica (SiO2), gallium arsenide (GaAs), and indium phosphide (InP) substrates in sliding contact with a diamond pin under a load. The results of the investigation indicate that BN films on nonmetallic substrates, like metal films on metallic substrates, deform elastically and plastically in the interfacial region when in contact with a diamond pin. However, unlike metal films and substrates, BN films on nonmetallic substrates can fracture when they are critically loaded. Not only does the yield pressure (hardness) of Si and SiO2 substrates increase by a factor of 2 in the presence of a BN film, but the critical load needed to fracture increases as well. The presence of films on the brittle substrates can arrest crack formation. The BN film reduces adhesion and friction in the sliding contact. BN adheres to Si and SiO2 and forms a good quality film, while it adheres poorly to GaAs and InP. The interfacial adhesive strengths were 1 GPa for a BN film on Si and appreciably higher than 1 GPa for a BN film on SiO2
Electron Power-Law Spectra in Solar and Space Plasmas
Particles are accelerated to very high, non-thermal energies in solar and
space plasma environments. While energy spectra of accelerated electrons often
exhibit a power law, it remains unclear how electrons are accelerated to high
energies and what processes determine the power-law index . Here, we
review previous observations of the power-law index in a variety of
different plasma environments with a particular focus on sub-relativistic
electrons. It appears that in regions more closely related to magnetic
reconnection (such as the `above-the-looptop' solar hard X-ray source and the
plasma sheet in Earth's magnetotail), the spectra are typically soft ( 4). This is in contrast to the typically hard spectra ( 4) that are observed in coincidence with shocks. The difference
implies that shocks are more efficient in producing a larger non-thermal
fraction of electron energies when compared to magnetic reconnection. A caveat
is that during active times in Earth's magnetotail, values seem
spatially uniform in the plasma sheet, while power-law distributions still
exist even in quiet times. The role of magnetotail reconnection in the electron
power-law formation could therefore be confounded with these background
conditions. Because different regions have been studied with different
instrumentations and methodologies, we point out a need for more systematic and
coordinated studies of power-law distributions for a better understanding of
possible scaling laws in particle acceleration as well as their universality.Comment: 67 pages, 15 figures; submitted to Space Science Reviews; comments
welcom
Athena: A New Code for Astrophysical MHD
A new code for astrophysical magnetohydrodynamics (MHD) is described. The
code has been designed to be easily extensible for use with static and adaptive
mesh refinement. It combines higher-order Godunov methods with the constrained
transport (CT) technique to enforce the divergence-free constraint on the
magnetic field. Discretization is based on cell-centered volume-averages for
mass, momentum, and energy, and face-centered area-averages for the magnetic
field. Novel features of the algorithm include (1) a consistent framework for
computing the time- and edge-averaged electric fields used by CT to evolve the
magnetic field from the time- and area-averaged Godunov fluxes, (2) the
extension to MHD of spatial reconstruction schemes that involve a
dimensionally-split time advance, and (3) the extension to MHD of two different
dimensionally-unsplit integration methods. Implementation of the algorithm in
both C and Fortran95 is detailed, including strategies for parallelization
using domain decomposition. Results from a test suite which includes problems
in one-, two-, and three-dimensions for both hydrodynamics and MHD are given,
not only to demonstrate the fidelity of the algorithms, but also to enable
comparisons to other methods. The source code is freely available for download
on the web.Comment: 61 pages, 36 figures. accepted by ApJ
Asymmetry in the Spectrum of High-Velocity H2O Maser Emission Features in Active Galactic Nuclei
We suggest a mechanism for the amplification of high-velocity water-vapor
maser emission features from the central regions of active galactic nuclei. The
model of an emitting accretion disk is considered. The high-velocity emission
features originate in the right and left wings of the Keplerian disk. The
hyperfine splitting of the signal levels leads to an asymmetry in the spectral
profile of the water vapor maser line at a frequency of 22.235 GHz. We show
that the gain profile asymmetry must lead to an enhanced brightness of the
blueshifted high-velocity emission features compared to the redshifted ones.
Such a situation is observed in the source UGC 3789.Comment: 11 pages 3 figure
The 3-D kinematics of water masers around the semiregular variable RT Virginis
We report observations of water masers around the semiregular variable RT
Virginis (RT Vir), which have been made with the Very Long Baseline Array
(VLBA) of the National Radio Astronomy Observatory (NRAO) at five epochs, each
separated by three weeks of time. We detected about 60 maser features at each
epoch. Overall, 61 features, detected at least twice, were tracked by their
radial velocities and proper motions. The 3-D maser kinematics exhibited a
circumstellar envelope that is expanding roughly spherically with a velocity of
about 8 km/s. Asymmetries in both the spatial and velocity distributions of the
maser features were found in the envelope, but less significant than that found
in other semiregular variables. Systematic radial-velocity drifts of individual
maser features were found with amplitudes of <= 2 km/s/yr. For one maser
feature, we found a quadratic position shift with time along a straight line on
the sky. This apparent motion indicates an acceleration with an amplitude of 33
km/s/yr, implying the passage of a shock wave driven by the stellar pulsation
of RT Vir. The acceleration motion is likely seen only on the sky plane because
of a large velocity gradient formed in the accelerating maser region. We
estimated the distance to RT Vir to be about 220 pc on the basis of both the
statistical parallax and model-fitting methods for the maser kinematics.Comment: 18 pages, 8 figures. Accepted to appear in the Astrophysical Journa
Turbulent magnetic field amplification from spiral SASI modes in core-collapse supernovae
We describe the initial implementation of magnetohydrodynamics (MHD) in our
astrophysical simulation code \genasis. Then, we present MHD simulations
exploring the capacity of the stationary accretion shock instability (SASI) to
generate magnetic fields by adding a weak magnetic field to an initially
spherically symmetric fluid configuration that models a stalled shock in the
post-bounce supernova environment. Upon perturbation and nonlinear SASI
development, shear flows associated with the spiral SASI mode contributes to a
widespread and turbulent field amplification mechanism. While the SASI may
contribute to neutron star magnetization, these simulations do not show
qualitatively new features in the global evolution of the shock as a result of
SASI-induced magnetic field amplification.Comment: 15 pages, 7 figures, To appear in the Journal of Physics: Conference
Series. Proceedings of the IUPAP Conference on Computational Physics
(CCP2011
- …
