2,203 research outputs found

    Atomic and electronic structure of ultra-thin Al/AlOx/Al interfaces

    Full text link
    Interfaces between metals based on AlOx_{x} represent the most popular basis for Josephson junctions or, more recently, also for junctions exhibiting substantial tunneling magneto-resistance. We have performed a computational study of possible local geometric structures of such interfaces at the ab-initio DFT/GGA level of approximation to complement recent experimental data on ultra-thin AlOx_{x}-based interfaces. We present two competing structures that we characterise with their electronic properties: fragmentation and interface energies.Comment: Presented at the ECOSS24, submitted to the proceeding - special issue of Surf. Scienc

    Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis

    Get PDF
    The small GTP-binding protein Rab8 is known to play an essential role in intracellular transport and cilia formation. We have previously demonstrated that Rab8a is required for localising apical markers in various organisms. Rab8a has a closely related isoform, Rab8b. To determine whether Rab8b can compensate for Rab8a, we generated Rab8b-knockout mice. Although the Rab8b-knockout mice did not display an overt phenotype, Rab8a and Rab8b double-knockout mice exhibited mislocalisation of apical markers and died earlier than Rab8a-knockout mice. The apical markers accumulated in three intracellular patterns in the double-knockout mice. However, the localisation of basolateral and/or dendritic markers of the double-knockout mice seemed normal. The morphology and the length of various primary and/or motile cilia, and the frequency of ciliated cells appeared to be identical in control and double-knockout mice. However, an additional knockdown of Rab10 in double-knockout cells greatly reduced the percentage of ciliated cells. Our results highlight the compensatory effect of Rab8a and Rab8b in apical transport, and the complexity of the apical transport process. In addition, neither Rab8a nor Rab8b are required for basolateral and/or dendritic transport. However, simultaneous loss of Rab8a and Rab8b has little effect on ciliogenesis, whereas additional loss of Rab10 greatly affects ciliogenesis

    Temperature dependence of iron local magnetic moment in phase-separated superconducting chalcogenide

    Get PDF
    We have studied local magnetic moment and electronic phase separation in superconducting Kx_{x}Fe2y_{2-y}Se2_2 by x-ray emission and absorption spectroscopy. Detailed temperature dependent measurements at the Fe K-edge have revealed coexisting electronic phases and their correlation with the transport properties. By cooling down, the local magnetic moment of Fe shows a sharp drop across the superconducting transition temperature (Tc_c) and the coexisting phases exchange spectral weights with the low spin state gaining intensity at the expense of the higher spin state. After annealing the sample across the iron-vacancy order temperature, the system does not recover the initial state and the spectral weight anomaly at Tc_c as well as superconductivity disappear. The results clearly underline that the coexistence of the low spin and high spin phases and the transitions between them provide unusual magnetic fluctuations and have a fundamental role in the superconducting mechanism of electronically inhomogeneous Kx_{x}Fe2y_{2-y}Se2_2 system.Comment: 6 pages, 5 figure

    Field-Induced Magnetostructural Transitions in Antiferromagnetic Fe1+yTe1-xSx

    Full text link
    The transport and structural properties of Fe1+yTe1-xSx (x=0, 0.05, and 0.10) crystals were studied in pulsed magnetic fields up to 65 T. The application of high magnetic fields results in positive magnetoresistance effect with prominent hystereses in the antiferromagnetic state. Polarizing microscope images obtained at high magnetic fields showed simultaneous occurrence of structural transitions. These results indicate that magnetoelastic coupling is the origin of the bicollinear magnetic order in iron chalcogenides.Comment: 5 pages, 5 figures, accepted for publication in Journal of the Physical Society of Japa

    Growth of superconducting single-crystalline (Lu, Ca)Ba2Cu3O7-d whiskers

    Full text link
    Single-crystalline (Lu, Ca)Ba2Cu3O7-d (Lu(Ca)123) whiskers have been successfully grown using the Te-doping method. X-ray diffraction patterns of Lu(Ca)123 whiskers showed sharp (0 0 l) peaks corresponding to REBa2Cu3O7-d phase (RE = rare earth elements). Transport measurements showed that the superconducting transition occurred at 83 K in the obtained whiskers.Comment: 3 pages, 3 figures, ISS200

    Synthesis and crystal growth of Cs0.8(FeSe0.98)2: a new iron-based superconductor with Tc=27K

    Full text link
    We report on the synthesis of large single crystals of a new FeSe-layer superconductor Cs0.8(FeSe0.98)2. X-ray powder diffraction, neutron powder-diffraction and magnetization measurements have been used to compare the crystal structure and the magnetic properties of Cs0.8(FeSe0.98)2 with those of the recently discovered potassium intercalated system KxFe2Se2. The new compound Cs0.8(FeSe0.98)2 shows a slightly lower superconducting transition temperature (Tc=27.4 K) in comparison to 29.5 in K0.8(FeSe0.98)2). The volume of the crystal unit cell increases by replacing K by Cs - the c-parameter grows from 14.1353(13) {\AA} to 15.2846(11) {\AA}. For the so far known alkali metal intercalated layered compounds (K0.8Fe2Se2 and Cs0.8(FeSe0.98)2) the Tc dependence on the anion height (distance between Fe-layers and Se-layers) was found to be analogous to those reported for As-containing Fe-superconductors and Fe(Se1-xChx), where Ch=Te, S.Comment: 8 pages, 4 figure
    corecore