35,387 research outputs found

    Multiple solutions in extracting physics information from experimental data

    Full text link
    Multiple solutions exist in various experimental situations whenever the sum of several amplitudes is used to fit the experimentally measured distributions, such as the cross section, the mass spectrum, or the angular distribution. We show a few examples where multiple solutions were found, while only one solution was reported in the publications. Since there is no existing rules found in choosing any one of these solutions as the physics one, we propose a simple rule which agrees with what have been adopted in previous literatures: the solution corresponding to the minimal magnitudes of the amplitudes must be the physical solution. We suggest test this rule in the future experiments.Comment: 10 pages, 3 figure

    A study of digital holographic filters generation. Phase 2: Digital data communication system, volume 1

    Get PDF
    An empirical study of the performance of the Viterbi decoders in bursty channels was carried out and an improved algebraic decoder for nonsystematic codes was developed. The hybrid algorithm was simulated for the (2,1), k = 7 code on a computer using 20 channels having various error statistics, ranging from pure random error to pure bursty channels. The hybrid system outperformed both the algebraic and the Viterbi decoders in every case, except the 1% random error channel where the Viterbi decoder had one bit less decoding error

    Formation time distribution of dark matter haloes: theories versus N-body simulations

    Full text link
    This paper uses numerical simulations to test the formation time distribution of dark matter haloes predicted by the analytic excursion set approaches. The formation time distribution is closely linked to the conditional mass function and this test is therefore an indirect probe of this distribution. The excursion set models tested are the extended Press-Schechter (EPS) model, the ellipsoidal collapse (EC) model, and the non-spherical collapse boundary (NCB) model. Three sets of simulations (6 realizations) have been used to investigate the halo formation time distribution for halo masses ranging from dwarf-galaxy like haloes (M=103MM=10^{-3} M_*, where MM_* is the characteristic non-linear mass scale) to massive haloes of M=8.7MM=8.7 M_*. None of the models can match the simulation results at both high and low redshift. In particular, dark matter haloes formed generally earlier in our simulations than predicted by the EPS model. This discrepancy might help explain why semi-analytic models of galaxy formation, based on EPS merger trees, under-predict the number of high redshift galaxies compared with recent observations.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    An experimental study of coupling between combustor pressure, fuel/air mixing, and the flame

    Get PDF
    Fuel-air mixing behavior under the influence of imposed acoustic oscillations has been studied by investigating the response of the fuel mixture fraction field. The distribution of local fuel mixture fraction inside the mixing zone, which is expected to evolve into the local equivalence ratio in the flame zone, is closely coupled to unstable and oscillatory flame behavior. The Experiment was performed with an aerodynamically-stabilized non-premixed burner. In this study, acoustic oscillations were imposed at 22, 27, 32, 37, and 55Hz. Phase-resolved acetone PLIF was used to image the flow field of both isothermal and reacting flow cases and this data along with the derived quantities of temporal and spatial unmixedness were employed for analysis. The behavior of the unmixedness factor is compared with the previous measurements of oscillations in the flame zone. This comparison shows that local oscillations (of order millimeters or smaller) in fuel/air mixing are closely related to the oscillatory behavior of the flame. For each driving frequency, the mixture fraction oscillates at that frequency but with a slight phase difference between it and the pressure field/flame intensity, indicating that the fuel mixture fraction oscillation are likely the major reason for oscillatory behaviors of this category of flames and combustor geometry

    The cross-correlation between galaxies of different luminosities and Colors

    Get PDF
    We study the cross-correlation between galaxies of different luminosities and colors, using a sample selected from the SDSS Dr 4. Galaxies are divided into 6 samples according to luminosity, and each of these samples is divided into red and blue subsamples. Projected auto-correlation and cross-correlation is estimated for these subsample. At projected separations r_p > 1\mpch, all correlation functions are roughly parallel, although the correlation amplitude depends systematically on luminosity and color. On r_p < 1\mpch, the auto- and cross-correlation functions of red galaxies are significantly enhanced relative to the corresponding power laws obtained on larger scales. Such enhancement is absent for blue galaxies and in the cross-correlation between red and blue galaxies. We esimate the relative bias factor on scales r > 1\mpch for each subsample using its auto-correlation function and cross-correlation functions. The relative bias factors obtained from different methods are similar. For blue galaxies the luminosity-dependence of the relative bias is strong over the luminosity range probed (-23.0<M_r < -18.0),but for red galaxies the dependence is weaker and becomes insignificant for luminosities below L^*. To examine whether a significant stochastic/nonlinear component exists in the bias relation, we study the ratio R_ij= W_{ii}W_{jj}/W_{ij}^2, where W_{ij} is the projected correlation between subsample i and j. We find that the values of R_ij are all consistent with 1 for all-all, red-red and blue-blue samples, however significantly larger than 1 for red-blue samples. For faint red - faint blue samples the values of R_{ij} are as high as ~ 2 on small scales r_p < 1 \mpch and decrease with increasing r_p.Comment: 25 pages, 18 figures, Accepted for publication in Ap

    Observational Evidence for an Age Dependence of Halo Bias

    Full text link
    We study the dependence of the cross-correlation between galaxies and galaxy groups on group properties. Confirming previous results, we find that the correlation strength is stronger for more massive groups, in good agreement with the expected mass dependence of halo bias. We also find, however, that for groups of the same mass, the correlation strength depends on the star formation rate (SFR) of the central galaxy: at fixed mass, the bias of galaxy groups decreases as the SFR of the central galaxy increases. We discuss these findings in light of the recent findings by Gao et al (2005) that halo bias depends on halo formation time, in that halos that assemble earlier are more strongly biased. We also discuss the implication for galaxy formation, and address a possible link to galaxy conformity, the observed correlation between the properties of satellite galaxies and those of their central galaxy.Comment: 4 pages, 4 figures, Accepted for publication in ApJ Letters. Figures 3 and 4 replaced. The bias dependence on the central galaxy luminosity is omitted due to its sensitivity to the mass mode

    Accurate determination of the Lagrangian bias for the dark matter halos

    Get PDF
    We use a new method, the cross power spectrum between the linear density field and the halo number density field, to measure the Lagrangian bias for dark matter halos. The method has several important advantages over the conventional correlation function analysis. By applying this method to a set of high-resolution simulations of 256^3 particles, we have accurately determined the Lagrangian bias, over 4 magnitudes in halo mass, for four scale-free models with the index n=-0.5, -1.0, -1.5 and -2.0 and three typical CDM models. Our result for massive halos with MMM \ge M_* (MM_* is a characteristic non-linear mass) is in very good agreement with the analytical formula of Mo & White for the Lagrangian bias, but the analytical formula significantly underestimates the Lagrangian clustering for the less massive halos $M < M_*. Our simulation result however can be satisfactorily described, with an accuracy better than 15%, by the fitting formula of Jing for Eulerian bias under the assumption that the Lagrangian clustering and the Eulerian clustering are related with a linear mapping. It implies that it is the failure of the Press-Schechter theories for describing the formation of small halos that leads to the inaccuracy of the Mo & White formula for the Eulerian bias. The non-linear mapping between the Lagrangian clustering and the Eulerian clustering, which was speculated as another possible cause for the inaccuracy of the Mo & White formula, must at most have a second-order effect. Our result indicates that the halo formation model adopted by the Press-Schechter theories must be improved.Comment: Minor changes; accepted for publication in ApJ (Letters) ; 11 pages with 2 figures include
    corecore