686 research outputs found

    Incidence of antiviral drug resistance markers among human influenza A viruses in the Eastern Mediterranean Region, 2005–2016

    Get PDF
    Background: Two classes of antiviral drugs are available for influenza antiviral therapy: the adamantanes and the neuraminidase inhibitors (NAIs). Due to the emergence of adamantane-resistant variants, the use of these drugs has been largely limited in the world. The NAIs became the drugs of choice for treatment of influenza A infections. However, amino acid substitutions in the NA protein might lead to reduced sensitivity to NAIs. Methods: The frequency and distribution of matrix protein 2 (M2) and neuraminidase (NA) variants which confer resistance to antiviral drugs was investigated in the Eastern Mediterranean Region (EMR) between 2005 and 2016. A total of 314 M2 and 1209 NA protein sequences from influenza A/H1N1, A/H1N1pdm09, A/H3N2, and A/H5N1 available in the public database were analyzed. Results: Eighty-six percent of the influenza A viruses detected in the EMR were resistant to adamantanes, among which, H3 strains exhibited the highest (95.32%) level of adamantane resistance. Approximately 98.51% (265/269) of influenza A/H1N1 and H3N2 resistant viruses had the S31N substitution in their M2 sequences. The V27A mutation was the only resistance marker found in A/H5N1 viruses and was detected at a frequency of 7.40% among the investigated viruses. Other resistant mutations L26F, A30T, G34E, and L38F were not detected in any of the variants. We found that 2.81% (n = 34) of the detected NA sequences from influenza A viruses possessed at least one NAI-resistant mutation and the vast majority of resistant viruses 79.41% (27/34) bear the H274Y mutation. The frequency of NAI-resistant viruses was 3.29% (24/729) for the H1N1pdm09, 10.64% (5/47) for the seasonal H1N1, and 4.06% (5/123) for H5N1 viruses. None of the H3N2 viruses analyzed during the study period were resistant to NAIs. Conclusion: Our study reveals the emergence and spread of antiviral drug resistant influenza A viruses in the EMR and emphasizes the importance of continuous surveillance to maintain the effective use of the current antivirals. © 2018 Elsevier B.V

    Optical fiber‐based in vivo quantification of growth factor receptors

    Full text link
    BACKGROUND: Growth factor receptors such as epidermal growth factor receptor 1 and human epidermal growth receptor 2 (HER2) are overexpressed in certain cancer cells. Antibodies against these receptors (eg. cetuximab and transtuzumab [Herceptin]) have shown therapeutic value in cancer treatment. The existing methods for the quantification of these receptors in tumors involve immunohistochemistry or DNA quantification, both in extracted tissue samples. The goal of the study was to evaluate whether an optical fiber‐based technique can be used to quantify the expression of multiple growth factor receptors simultaneously. METHODS: The authors examined HER2 expression using the monoclonal antibody trastuzumab as a targeting ligand to test their system. They conjugated trastuzumab to 2 different Alexa Fluor dyes with different excitation and emission wavelengths. Two of the dye conjugates were subsequently injected intravenously into mice bearing HER2‐expressing subcutaneous tumors. An optical fiber was then inserted into the tumor through a 30‐gauge needle, and using a single laser beam as the excitation source, the fluorescence emitted by the 2 conjugates was identified and quantified by 2‐photon optical fiber fluorescence. RESULTS: The 2 conjugates bound to the HER2‐expressing tumor competitively in a receptor‐specific fashion, but they failed to bind to a similar cell tumor that did not express HER2. The concentration of the conjugate present in the tumor as determined by 2‐photon optical fiber fluorescence was shown to serve as an index of the HER2 expression levels. CONCLUSIONS: These studies offer a minimally invasive technique for the quantification of tumor receptors simultaneously. Cancer 2012;. © 2011 American Cancer Society. The paper describes the in vivo quantification of human epidermal growth receptor 2 using a minimally invasive 2‐photon optical fiber fluorescence detection technique. The proof of concept for the simultaneous in vivo quantification of multiple receptors is provided.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91221/1/26487_ftp.pd

    Quantifying the CDK inhibitor VMY-1-103\u27s activity and tissue levels in an in vivo tumor model by LC-MS/MS and by MRI.

    Get PDF
    The development of new small molecule-based therapeutic drugs requires accurate quantification of drug bioavailability, biological activity and treatment efficacy. Rapidly measuring these endpoints is often hampered by the lack of efficient assay platforms with high sensitivity and specificity. Using an in vivo model system, we report a simple and sensitive liquid chromatography-tandem mass spectrometry assay to quantify the bioavailability of a recently developed novel cyclin-dependent kinase inhibitor VMY-1-103, a purvalanol B-based analog whose biological activity is enhanced via dansylation. We developed a rapid organic phase extraction technique and validated wide and functional VMY-1-103 distribution in various mouse tissues, consistent with its enhanced potency previously observed in a variety of human cancer cell lines. More importantly, in vivo MRI and single voxel proton MR-Spectroscopy further established that VMY-1-103 inhibited disease progression and affected key metabolites in a mouse model of hedgehog-driven medulloblastoma

    CDCP1 (CUB domain containing protein 1)

    Get PDF
    Review on CDCP1 (CUB domain containing protein 1), with data on DNA, on the protein encoded, and where the gene is implicated

    Binding Modes of Peptidomimetics Designed to Inhibit STAT3

    Get PDF
    STAT3 is a transcription factor that has been found to be constitutively activated in a number of human cancers. Dimerization of STAT3 via its SH2 domain and the subsequent translocation of the dimer to the nucleus leads to transcription of anti-apoptotic genes. Prevention of the dimerization is thus an attractive strategy for inhibiting the activity of STAT3. Phosphotyrosine-based peptidomimetic inhibitors, which mimic pTyr-Xaa-Yaa-Gln motif and have strong to weak binding affinities, have been previously investigated. It is well-known that structures of protein-inhibitor complexes are important for understanding the binding interactions and designing stronger inhibitors. Experimental structures of inhibitors bound to the SH2 domain of STAT3 are, however, unavailable. In this paper we describe a computational study that combined molecular docking and molecular dynamics to model structures of 12 peptidomimetic inhibitors bound to the SH2 domain of STAT3. A detailed analysis of the modeled structures was performed to evaluate the characteristics of the binding interactions. We also estimated the binding affinities of the inhibitors by combining MMPB/GBSA-based energies and entropic cost of binding. The estimated affinities correlate strongly with the experimentally obtained affinities. Modeling results show binding modes that are consistent with limited previous modeling studies on binding interactions involving the SH2 domain and phosphotyrosine(pTyr)-based inhibitors. We also discovered a stable novel binding mode that involves deformation of two loops of the SH2 domain that subsequently bury the C-terminal end of one of the stronger inhibitors. The novel binding mode could prove useful for developing more potent inhibitors aimed at preventing dimerization of cancer target protein STAT3

    Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention

    Get PDF
    The EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance and metastasis. The expression of this pathway is frequently altered in breast cancer due to mutations at or aberrant expression of: HER2, ERalpha, BRCA1, BRCA2, EGFR1, PIK3CA, PTEN, TP53, RB as well as other oncogenes and tumor suppressor genes. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway and upstream HER2 has been associated with breast cancer initiating cells (CICs) and in some cases resistance to treatment. The anti-diabetes drug metformin can suppress the growth of breast CICs and herceptin-resistant HER2+ cells. This review will discuss the importance of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway primarily in breast cancer but will also include relevant examples from other cancer types. The targeting of this pathway will be discussed as well as clinical trials with novel small molecule inhibitors. The targeting of the hormone receptor, HER2 and EGFR1 in breast cancer will be reviewed in association with suppression of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway.USAMRMC {[}BC022276]; Intramural RECDA Award; Italian Association for Cancer Research (AIRC); MIUR-PRIN; Italian MIUR-FIRB Accordi di Programma; Italian ``Ministero dell'Istruzione, dell'Universita e della Ricerca (Ministry for Education, Universities and Research) - FIRB-MERIT {[}RBNE08YYBM]; Italian Ministry of Economy and Finance; Italian Ministry of Health, Ricerca Finalizzata Stemness; MIUR FIRB {[}RBAP11ZJFA\_001]; CRO; Italian Association for Cancer Research, (AIRC) (RM PI); Italian Association for Cancer Research, (AIRC) {[}MCO10016]; Italian Ministry of Health; Regione Friuli Venezia-Giuli

    Characterization of the neuraminidase genes from human influenza A viruses circulating in Iran from 2010 to 2015

    Get PDF
    Background: Characterization of influenza viruses is critical for detection of new emerging variants. Herein, we analyzed the genetic diversity and drug susceptibility of the neuraminidase gene (NAs) expressed by influenza A/H1N1pdm09 and A/H3N2 viruses circulating in Iran from 2010 to 2015. Methods: We genetically analyzed the NAs of 38 influenza A/H1N1pdm09 and 35 A/H3N2 isolates. Results: The Iranian A/H1N1pdm09 viruses belonged to seven genogroups/subgenogroups, with the dominant groups being genogroups 6B and 6C. The A/H3N2 isolates fell into six gneogroups/subgenogroups, with the dominant genogroups being 3C and 3C.2a. The most common mutations detected among the A/H1N1pdm09 viruses included N44S, V106I, N200S, and N248D. All H1N1pdm09 viruses were genetically susceptible to the NAIs. However, one A/H1N1pdm09 virus from the 2013–2014 season possessed an NA-S247N mutation, which reduces the susceptibility to oseltamivir. In case of H3N2, none of the analyzed Iranian strains carried a substitution that might affect its susceptibility to NAIs. Conclusion: The ongoing evolution of influenza viruses and the detect of influenza viruses with reduced susceptibility to NAIs warrants continuous monitoring of the circulating strains. © 2017, Springer-Verlag GmbH Austria
    corecore