2,250 research outputs found
Polyhedral Cosmic Strings
Quantum field theory is discussed in M\"obius corner kaleidoscopes using the
method of images. The vacuum average of the stress-energy tensor of a free
field is derived and is shown to be a simple sum of straight cosmic string
expressions, the strings running along the edges of the corners. It does not
seem possible to set up a spin-half theory easily.Comment: 15 pages, 4 text figures not include
TRIANGULATION OF THE INTERSTELLAR MAGNETIC FIELD
Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere's global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane—the so-called B–V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B–V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7–2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from the IBEX ribbon center and the B–V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7–2.7 keV) and the B–V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field
Fluorescence resonance energy transfer between organic dyes adsorbed onto nano-clay and Langmuir-Blodgett (LB) films
In this communication we investigate two dyes N,N' -dioctadecyl thiacyanine
perchlorate (NK) and octadecyl rhodamine B chloride (RhB) in Langmuir and
Langmuir-Blodgett (LB) films with or with out a synthetic clay laponite.
Observed changes in isotherms of RhB in absence and presence of nano-clay
platelets indicate the incorporation of clay platelets onto RhB-clay hybrid
films. AFM image confirms the incorporation of clay in hybrid films. FRET was
observed in clay dispersion and LB films with and without clay. Efficiency of
energy transfer was maximum in LB films with clay.Comment: 15 pages 5 figures, 1 tabl
Getting Closer or Drifting Apart
Advances in communication and transportation technologies have the potential to bring people closer together and create a "global village." However, they also allow heterogeneous agents to segregate along special interests, which gives rise to communities fragmented by type rather than by geography. We show that lower communication costs should always decrease separation between individual agents even as group-based separation increases. Each measure of separation is pertinent for distinct types of social interaction. A group-based measure captures the diversity of group preferences that can have an impact on the provision of public goods. While an individual measure correlates with the speed of information transmission through the social network that affects, for example, learning about job opportunities and new technologies. We test the model by looking at coauthoring between academic economists before and during the rise of the Internet in the 1990s.Economic
Pulsed flows at the high-altitude cusp poleward boundary, and associated ionospheric convection and particle signatures, during a cluster - FAST - SuperDARN - sondrestrom conjunction under a southwest
Particle and magnetic field observations during a magnetic conjunction Cluster 1-FAST-Søndrestrøm within the field of view of SuperDARN radars on 21 January 2001 allow us to draw a detailed, comprehensive and self-consistent picture at three heights of signatures associated with transient reconnection under a steady south-westerly IMF (clock angle ≈130◦). Cluster 1 was outbound through the high altitude (∼12RE ) exterior northern cusp tailward of the bifurcation line (geomagnetic Bx>0) when a solar wind dynamic pressure release shifted the spacecraft into a boundary layer downstream of the cusp. The centerpiece of the investigation is a series of flow bursts observed there by the spacecraft, which were accompanied by strong field pertur- bations and tailward flow deflections. Analysis shows these to be Alfven waves. We interpret these flow events as being due to a sequence of reconnected flux tubes, with field-aligned currents in the associated Alfven waves carrying stresses to the underlying ionosphere, a view strengthened by the other observations. At the magnetic footprint of the region of Cluster flow bursts, FAST observed an ion energy- latitude disperison of the stepped cusp type, with individual cusp ion steps corresponding to individual flow bursts. Simultaneously, the SuperDARN Stokkseyri radar observed very strong poleward-moving radar auroral forms (PMRAFs) which were conjugate to the flow bursts at Cluster. FAST was traversing these PMRAFs when it observed the cusp ion steps. The Søndrestrøm radar observed pulsed ionospheric flows (PIFs) just poleward of the convection reversal boundary. As at Cluster, the flow was eastward (tailward), implying a coherent eastward (tailward) motion of the hypothesized open flux tubes. The joint Søndrestrøm and FAST observations indicate that the open/closed field line boundary was equatorward of the convection reversal boundary by ∼2 deg. The unprecedented accuracy of the conjunction argues strongly for the validity of the interpretation of the various signatures as resulting from transient reconnection. In particular, the cusp ion steps arise on this pass from this origin, in consonance with the original pulsating cusp model. The observations point to the need of extending current ideas on the response of the ionosphere to transient reconnection. Specifically, it argues in favor of re-establishing the high-latitude boundary layer downstream of the cusp as an active site of momentum transfer
Antibody mediated neutralization of myelin associated EphrinB3 accelerates CNS remyelination
This is the final version of the article. It was first available from Springer via
http://dx.doi.org/10.1007/s00401-015-1521-1Remyelination in multiple sclerosis (MS) lesions often remains incomplete despite the presence of oligodendrocyte progenitor cells (OPCs). Amongst other factors, successful remyelination depends on the phagocytic clearance of myelin debris. However, the proteins in myelin debris that act as potent and selective inhibitors on OPC differentiation and inhibit CNS remyelination remain unknown. Here, we identify the transmembrane signalling protein EphrinB3 as important mediator of this inhibition, using a protein analytical approach in combination with a primary rodent OPC assay. In the presence of EphrinB3, OPCs fail to differentiate. In a rat model of remyelination, infusion of EphrinB3 inhibits remyelination. In contrast, masking EphrinB3 epitopes using antibodies promotes remyelination. Finally, we identify EphrinB3 in MS lesions and demonstrate that MS lesion extracts inhibit OPC differentiation while antibody-mediated masking of EphrinB3 epitopes promotes it. Our findings suggest that EphrinB3 could be a target for therapies aiming at promoting remyelination in demyelinating disease.This work was supported by the UK MS Society Grant ref: 941/11. MRNK held a NIHR
Clinical Lectureship. KAN was supported by an ERC advanced award
Scaling of the Conductivity with Temperature and Uniaxial Stress in Si:B at the Metal-Insulator Transition
Using uniaxial stress to tune Si:B through the metal-insulator transition we
find the conductivity at low temperatures shows an excellent fit to scaling
with temperature and stress on both sides of the transition. The scaling
functions yield the conductivity in the metallic and insulating phases, and
allow a reliable determination of the temperature dependence in the critical
regions on both sides of the transition
Acceleration of Solar Wind Ions by Nearby Interplanetary Shocks: Comparison of Monte Carlo Simulations with Ulysses Observations
The most stringent test of theoretical models of the first-order Fermi
mechanism at collisionless astrophysical shocks is a comparison of the
theoretical predictions with observational data on particle populations. Such
comparisons have yielded good agreement between observations at the
quasi-parallel portion of the Earth's bow shock and three theoretical
approaches, including Monte Carlo kinetic simulations. This paper extends such
model testing to the realm of oblique interplanetary shocks: here observations
of proton and alpha particle distributions made by the SWICS ion mass
spectrometer on Ulysses at nearby interplanetary shocks are compared with test
particle Monte Carlo simulation predictions of accelerated populations. The
plasma parameters used in the simulation are obtained from measurements of
solar wind particles and the magnetic field upstream of individual shocks. Good
agreement between downstream spectral measurements and the simulation
predictions are obtained for two shocks by allowing the the ratio of the
mean-free scattering length to the ionic gyroradius, to vary in an optimization
of the fit to the data. Generally small values of this ratio are obtained,
corresponding to the case of strong scattering. The acceleration process
appears to be roughly independent of the mass or charge of the species.Comment: 26 pages, 6 figures, AASTeX format, to appear in the Astrophysical
Journal, February 20, 199
CAN IBEX IDENTIFY VARIATIONS IN THE GALACTIC ENVIRONMENT OF THE SUN USING ENERGETIC NEUTRAL ATOMS?
The Interstellar Boundary Explorer (IBEX) spacecraft is providing the first all-sky maps of the energetic neutral atoms (ENAs) produced by charge exchange between interstellar neutral Ho atoms and heliospheric solar wind and pickup ions in the heliosphere boundary regions. The "edge" of the interstellar cloud presently surrounding the heliosphere extends less than 0.1 pc in the upwind direction, terminating at an unknown distance, indicating that the outer boundary conditions of the heliosphere could change during the lifetime of the IBEX satellite. Using reasonable values for future outer heliosphere boundary conditions, ENA fluxes are predicted for one possible source of ENAs coming from outside of the heliopause. The ENA-production simulations use three-dimensional MHD plasma models of the heliosphere that include a kinetic description of neutrals and a Lorentzian distribution for ions. Based on this ENA-production model, it is then shown that the sensitivities of the IBEX 1.1 keV skymaps are sufficient to detect the variations in ENA fluxes that are expected to accompany the solar transition into the next upwind cloud. Approximately 20% of the IBEX 1.1 keV pixels appear capable of detecting the predicted model differences at the 3σ level, with these pixels concentrated in the Ribbon region. Regardless of the detailed ENA production model, the success of the modeled B centerdot R ~ 0 directions in reproducing the Ribbon locus, together with our results, indicates that the Ribbon phenomenon traces the variations in the heliosphere distortion caused by the relative pressures of the interstellar magnetic and gaseous components.United States. National Aeronautics and Space Administration (NASA IBEX mission, Explorer Program, grant NNX09AG63G
- …
