7,205 research outputs found
Renormalization group approach to spinor Bose-Fermi mixtures in a shallow optical lattice
We study a mixture of ultracold spin-half fermionic and spin-one bosonic
atoms in a shallow optical lattice where the bosons are coupled to the fermions
via both density-density and spin-spin interactions. We consider the parameter
regime where the bosons are in a superfluid ground state, integrate them out,
and obtain an effective action for the fermions. We carry out a renormalization
group analysis of this effective fermionic action at low temperatures, show
that the presence of the spinor bosons may lead to a separation of Fermi
surfaces of the spin-up and spin-down fermions, and investigate the parameter
range where this phenomenon occurs. We also calculate the susceptibilities
corresponding to the possible superfluid instabilities of the fermions and
obtain their possible broken-symmetry ground states at low temperatures and
weak interactions.Comment: 8 pages, 8 figs v
Fermionic Chern-Simons Theory of SU(4) Fractional Quantum Hall Effect
We develop a Fermionic Chern-Simons (CS) theory for the fractional quantum
Hall effect in monolayer graphene with SU(4) symmetry, arising from the spin
and the valley degrees of freedom, which involves four distinct CS gauge
fields. We choose the corresponding elements of the CS coupling matrix such
that an even number of spin and valley quantum number dependent flux quanta is
attached to all electrons and that any electron with a given spin and valley
quantum number sees an integer number of flux attached to other electrons with
different (spin and valley) quantum numbers. Using this CS matrix, we obtain a
list of possible fractional quantum Hall states that might occur in graphene
and propose wavefunctions for those states. Our analysis also applies to
fractional quantum Hall states of both bilayer quantum Hall systems without
spin polarization and bilayer spin polarized graphene.Comment: v1; 1 Fig, 2 Tables, 7+ page
Spin injection into a metal from a topological insulator
We study a junction of a topological insulator with a thin two-dimensional
(2D) non-magnetic or partially polarized ferromagnetic metallic film deposited
on a 3D insulator. We show that such a junction leads to a finite spin current
injection into the film whose magnitude can be controlled by tuning a voltage
applied across the junction. For ferromagnetic films, the direction of the
component of the spin current along the film magnetization can also be tuned by
tuning the barrier potential at the junction. We point out the role of
the chiral spin-momentum locking of the Dirac electrons behind this phenomenon
and suggest experiments to test our theory.Comment: Revised version with supplemental material
Spherical collapse of a heat conducting fluid in higher dimensions without horizon
We consider a scenario where the interior spacetime,described by a heat
conducting fluid sphere is matched to a Vaidya metric in higher
dimensions.Interestingly we get a class of solutions, where following heat
radiation the boundary surface collapses without the appearance of an event
horizon at any stage and this happens with reasonable properties of matter
field.The non-occurrence of a horizon is due to the fact that the rate of mass
loss exactly counterbalanced by the fall of boundary radius.Evidently this
poses a counter example to the so-called cosmic censorship hypothesis.Two
explicit examples of this class of solutions are also given and it is observed
that the rate of collapse is delayed with the introduction of extra
dimensions.The work extends to higher dimensions our previous investigation in
4D.Comment: 6 page
Entropy of the Kerr-Sen Black Hole
We study the entropy of Kerr-Sen black hole of heterotic string theory beyond
semiclassical approximations. Applying the properties of exact differentials
for three variables to the first law thermodynamics we derive the corrections
to the entropy of the black hole. The leading (logarithmic) and non leading
corrections to the area law are obtained.Comment: 8 pages. Corrected references
Time in Quantum Gravity
The Wheeler-DeWitt equation in quantum gravity is timeless in character. In
order to discuss quantum to classical transition of the universe, one uses a
time prescription in quantum gravity to obtain a time contained description
starting from Wheeler-DeWitt equation and WKB ansatz for the WD wavefunction.
The approach has some drawbacks. In this work, we obtain the time-contained
Schroedinger-Wheeler-DeWitt equation without using the WD equation and the WKB
ansatz for the wavefunction. We further show that a Gaussian ansatz for SWD
wavefunction is consistent with the Hartle-Hawking or wormhole dominance
proposal boundary condition. We thus find an answer to the small scale boundary
conditions.Comment: 12 Pages, LaTeX, no figur
Quantum Gravity Equation In Schroedinger Form In Minisuperspace Description
We start from classical Hamiltonian constraint of general relativity to
obtain the Einstein-Hamiltonian-Jacobi equation. We obtain a time parameter
prescription demanding that geometry itself determines the time, not the matter
field, such that the time so defined being equivalent to the time that enters
into the Schroedinger equation. Without any reference to the Wheeler-DeWitt
equation and without invoking the expansion of exponent in WKB wavefunction in
powers of Planck mass, we obtain an equation for quantum gravity in
Schroedinger form containing time. We restrict ourselves to a minisuperspace
description. Unlike matter field equation our equation is equivalent to the
Wheeler-DeWitt equation in the sense that our solutions reproduce also the
wavefunction of the Wheeler-DeWitt equation provided one evaluates the
normalization constant according to the wormhole dominance proposal recently
proposed by us.Comment: 11 Pages, ReVTeX, no figur
- …
