663 research outputs found
Turbulence and secondary motions in square duct flow
We study turbulent flows in pressure-driven ducts with square cross-section
through direct numerical simulation in a wide enough range of Reynolds number
to reach flow conditions which are representative of fully developed
turbulence. Numerical simulations are carried out over extremely long
integration times to get adequate convergence of the flow statistics, and
specifically high-fidelity representation of the secondary motions which arise.
The intensity of the latter is found to be in the order of 1-2% of the bulk
velocity, and unaffected by Reynolds number variations. The smallness of the
mean convection terms in the streamwise vorticity equation points to a simple
characterization of the secondary flows, which in the asymptotic high-Re regime
are found to be approximated with good accuracy by eigenfunctions of the
Laplace operator. Despite their effect of redistributing the wall shear stress
along the duct perimeter, we find that secondary motions do not have large
influence on the mean velocity field, which can be characterized with good
accuracy as that resulting from the concurrent effect of four independent flat
walls, each controlling a quarter of the flow domain. As a consequence, we find
that parametrizations based on the hydraulic diameter concept, and
modifications thereof, are successful in predicting the duct friction
coefficient
Proximity-induced ferromagnetism and chemical reactivity in few-layer VSe2 heterostructures
Among transition-metal dichalcogenides, mono and few-layers thick VSe2 has gained much recent attention following claims of intrinsic room-temperature ferromagnetism in this system, which have nonetheless proved controversial. Here, we address the magnetic and chemical properties of Fe/VSe2 heterostructure by combining element sensitive x-ray absorption spectroscopy and photoemission spectroscopy. Our x-ray magnetic circular dichroism results confirm recent findings that both native mono/few-layer and bulk VSe2 do not show intrinsic ferromagnetic ordering. Nonetheless, we find that ferromagnetism can be induced, even at room temperature, after coupling with a Fe thin film layer, with antiparallel alignment of the moment on the V with respect to Fe. We further consider the chemical reactivity at the Fe/VSe2 interface and its relation with interfacial magnetic coupling
Determination of the (3x3)-Sn/Ge(111) structure by photoelectron diffraction
At a coverage of about 1/3 monolayer, Sn deposited on Ge(111) below 550 forms
a metastable (sqrt3 x sqrt3)R30 phase. This phase continuously and reversibly
transforms into a (3x3) one, upon cooling below 200 K. The photoemission
spectra of the Sn 4d electrons from the (3x3)-Sn/Ge(111) surface present two
components which are attributed to inequivalent Sn atoms in T4 bonding sites.
This structure has been explored by photoelectron diffraction experiments
performed at the ALOISA beamline of the Elettra storage ring in Trieste
(Italy). The modulation of the intensities of the two Sn components, caused by
the backscattering of the underneath Ge atoms, has been measured as a function
of the emission angle at fixed kinetic energies and viceversa. The bond angle
between Sn and its nearest neighbour atoms in the first Ge layer (Sn-Ge1) has
been measured by taking polar scans along the main symmetry directions and it
was found almost equivalent for the two components. The corresponding bond
lengths are also quite similar, as obtained by studying the dependence on the
photoelectron kinetic energy, while keeping the photon polarization and the
collection direction parallel to the Sn-Ge1 bond orientation (bond emission). A
clear difference between the two bonding sites is observed when studying the
energy dependence at normal emission, where the sensitivity to the Sn height
above the Ge atom in the second layer is enhanced. This vertical distance is
found to be 0.3 Angstroms larger for one Sn atom out of the three contained in
the lattice unit cell. The (3x3)-Sn/Ge(111) is thus characterized by a
structure where the Sn atom and its three nearest neighbour Ge atoms form a
rather rigid unit that presents a strong vertical distortion with respect to
the underneath atom of the second Ge layer.Comment: 10 pages with 9 figures, added reference
Direct numerical simulation of supersonic pipe flow at moderate Reynolds number
We study compressible turbulent flow in a circular pipe at computationally high Reynolds number. Classical related issues are addressed and discussed in light of the DNS data, including validity of compressibility transformations, velocity/temperature relations, passive scalar statistics, and size of turbulent eddies. Regarding velocity statistics, we find that Huang's transformation yields excellent universality of the scaled Reynolds stresses distributions, whereas the transformation proposed by Trettel and Larsson (2016) yields better representation of the effects of strong variation of density and viscosity occurring in the buffer layer on the mean velocity distribution. A clear logarithmic layer is recovered in terms of transformed velocity and wall distance coordinates at the higher Reynolds number under scrutiny (Re τ ≈ 1000), whereas the core part of the flow is found to be characterized by a universal parabolic velocity profile. Based on formal similarity between the streamwise velocity and the passive scalar transport equations, we further propose an extension of the above compressibility transformations to also achieve universality of passive scalar statistics. Analysis of the velocity/temperature relationship provides evidence for quadratic dependence which is very well approximated by the thermal analogy proposed by Zhang et al. (2014). The azimuthal velocity and scalar spectra show an organization very similar to canonical incompressible flow, with a bump-shaped distribution across the flow scales, whose peak increases with the wall distance. We find that the size growth effect is well accounted for through an effective length scale accounting for the local friction velocity and for the local mean shear
Multiple hormonal and metabolic deficiency syndrome predicts outcome in heart failure: the T.O.S.CA. Registry
Direct numerical simulation of developed compressible flow in square ducts
We carry out direct numerical simulation of compressible square duct flow in the range of bulk Mach numbers M b =0.2−3, and up to friction Reynolds number Re τ =500. The effects of flow compressibility on the secondary motions are found to be negligible, with the typical Mach number associated with the cross-stream flow always less than 0.1. As in the incompressible case, we find that the wall law for the mean streamwise velocity applies with good approximation with respect to the nearest wall, upon suitable compressibility transformation. The same conclusion also applies to a passive scalar field, whereas the mean temperature does not exhibit inertial layers because of nonuniformity of the aerodynamic heating. We further find that the same temperature/velocity relation that holds for planar channels is applicable with good approximation for square ducts, and develop a similar relation between temperature and passive scalars
Direct numerical simulation of supersonic turbulent flows over rough surfaces
We perform direct numerical simulation of supersonic turbulent channel flow over cubical roughness elements, spanning bulk Mach numbers -, both in the transitional and fully rough regime. We propose a novel definition of roughness Reynolds number which is able to account for the viscosity variations at the roughness crest and should be used to compare rough-wall flows across different Mach numbers. As in the incompressible flow regime, the mean velocity profile shows a downward shift with respect to the baseline smooth wall cases, however, the magnitude of this velocity deficit is largely affected by the Mach number. Compressibility transformations are able to account for this effect, and data show a very good agreement with the incompressible fully rough asymptote, when the relevant roughness Reynolds number is used. Velocity statistics present outer layer similarity with the equivalent smooth wall cases, however, this does not hold for the thermal field, which is substantially affected by the roughness, even in the channel core. We show that this is a direct consequence of the quadratic temperature-velocity relation which is also valid for rough walls. Analysis of the heat transfer shows that the relative drag increase is always larger than the relative heat transfer enhancement, however, increasing the Mach number brings data closer to the Reynolds analogy line due to the rising relevance of the aerodynamic heating
Account and Transaction Protocol of the Open Banking Standard
To counteract the lack of competition and innovation in the financial services industry, the EU has issued the Second Payment Services Directive (PSD2) encouraging account servicing payment service providers to share data. The UK, similarly to other European countries, has promoted a standard API for data sharing: the Open Banking Standard. We present an overview of the results of a formal security analysis of the Account and Transaction API protocol
Recommended from our members
Direct Numerical Simulations of Turbulent Flow Over Various Riblet Shapes in Minimal-Span Channels
Riblets reduce skin-friction drag until their viscous-scaled size becomes large enough for turbulence to approach the wall, leading to the breakdown of drag-reduction. In order to investigate inertial-flow mechanisms that are responsible for the breakdown, we employ the minimal-span channel concept for cost-efficient direct numerical simulation (DNS) of rough-wall flows (MacDonald et al. in J Fluid Mech 816: 5–42, 2017). This allows us to investigate six different riblet shapes and various viscous-scaled sizes for a total of 21 configurations. We verify that the small numerical domains capture all relevant physics by varying the box size and by comparing to reference data from full-span channel flow. Specifically, we find that, close to the wall in the spectral region occupied by drag-increasing Kelvin–Helmholtz rollers (García-Mayoral and Jiménez in J Fluid Mech 678: 317–347, 2011), the energy-difference relative to smooth-wall flow is not affected by the narrow domain, even though these structures have large spanwise extents. This allows us to evaluate the influence of the Kelvin–Helmholtz instability by comparing fluctuations of wall-normal and streamwise velocity, pressure and a passive scalar over riblets of different shapes and viscous-scaled sizes to those over a smooth wall. We observe that triangular riblets with a tip angle α= 30 ∘ and blades appear to support the instability, whereas triangular riblets with α= 60 ∘–90 ∘ and trapezoidal riblets with α= 30 ∘ show little to no evidence of Kelvin–Helmholtz rollers.Australian Research Council, Discovery Project DP17010259
- …
