238 research outputs found
Metric for Security Activities assisted by Argumentative Logic
International audienceRecent security concerns related to future embedded systems make enforcement of security requirements one of the most critical phases when designing such systems. This paper introduces an approach for efficient enforcement of security requirements based on argumentative logic, especially reasoning about activation or deactivation of different security mechanisms under certain functional and non-functional requirements. In this paper, the argumentative logic is used to reason about the rationale behind dynamic enforcement of security policies
Introducing Preference-Based Argumentation to Inconsistent Ontological Knowledge Bases
International audienceHandling inconsistency is an inherent part of decision making in traditional agri-food chains – due to the various concerns involved. In order to explain the source of inconsistency and represent the existing conflicts in the ontological knowledge base, argumentation theory can be used. However, the current state of art methodology does not allow to take into account the level of significance of the knowledge expressed by the various ontological knowledge sources. We propose to use preferences in order to model those differences between formulas and evaluate our proposal practically by implementing it within the INRA platform and showing a use case using this formalism in a bread making decision support system
Brick Walls on the Brane
The so-called ``brick-wall model'' is a semi-classical approach that has been
used to explain black hole entropy in terms of thermal matter fields. Here, we
apply the brick-wall formalism to thermal bulk fields in a Randall-Sundrum
brane world scenario. In this case, the black hole entity is really a
string-like object in the anti-de Sitter bulk, while appearing as a
Schwarzchild black hole to observers living on the brane. In spite of these
exotic circumstances, we establish that the Bekenstein-Hawking entropy law is
preserved. Although a similar calculation was recently considered in the
literature, this prior work invoked a simplifying assumption (which we avoid)
that can not be adequately justified.Comment: 18 pages, Latex; references and discussion added but conclusions
unchanged; references missing in V4 have been restore
Orbital resonances in discs around braneworld Kerr black holes
Rotating black holes in the brany universe of the Randall-Sundrum type are
described by the Kerr geometry with a tidal charge b representing the
interaction of the brany black hole and the bulk spacetime. For b<0 rotating
black holes with dimensionless spin a>1 are allowed. We investigate the role of
the tidal charge b in the orbital resonance model of QPOs in black hole
systems. The orbital Keplerian, the radial and vertical epicyclic frequencies
of the equatorial, quasicircular geodetical motion are given and their radial
profiles are discussed. The resonant conditions are given in three
astrophysically relevant situations: for direct (parametric) resonances, for
the relativistic precession model, and for some trapped oscillations of the
warped discs, with resonant combinational frequencies. It is shown, how b could
influence matching of the observational data indicating the 3:2 frequency ratio
observed in GRS 1915+105 microquasar with prediction of the orbital resonance
model; limits on allowed range of the black hole parameters a and b are
established. The "magic" dimensionless black hole spin enabling presence of
strong resonant phenomena at the radius where \nu_K:\nu_{\theta}:\nu_r=3:2:1 is
determined in dependence on b. Such strong resonances could be relevant even in
sources with highly scattered resonant frequencies, as those expected in Sgr
A*. The specific values of a and b are given also for existence of specific
radius where \nu_K:\nu_{\theta}:\nu_r=s:t:u with 5>=s>t>u being small natural
numbers. It is shown that for some ratios such situation is impossible in the
field of black holes. We can conclude that analysing the microquasars
high-frequency QPOs in the framework of orbital resonance models, we can put
relevant limits on the tidal charge of brany Kerr black holes.Comment: 31 pages, 19 figures, to appear in General Relativity and Gravitatio
Small localized black holes in a braneworld: Formulation and numerical method
No realistic black holes localized on a 3-brane in the Randall-Sundrum
infinite braneworld have been found so far. The problem of finding a static
black hole solution is reduced to a boundary value problem. We solve it by
means of a numerical method, and show numerical examples of a localized black
hole whose horizon radius is small compared to the bulk curvature scale. The
sequence of small localized black holes exhibits a smooth transition from a
five-dimensional Schwarzschild black hole, which is a solution in the limit of
small horizon radius. The localized black hole tends to flatten as its horizon
radius increases. However, it becomes difficult to find black hole solutions as
its horizon radius increases.Comment: RevTeX, 13 pages, 6 figures, references corrected, typos corrected;
to appear in Phys.Rev.
Six-dimensional localized black holes: numerical solutions
To test the strong-gravity regime in Randall-Sundrum braneworlds, we consider
black holes bound to a brane. In a previous paper, we studied numerical
solutions of localized black holes whose horizon radii are smaller than the AdS
curvature radius. In this paper, we improve the numerical method and discuss
properties of the six dimensional (6D) localized black holes whose horizon
radii are larger than the AdS curvature radius. At a horizon temperature
, the thermodynamics of the localized black
hole undergo a transition with its character changing from a 6D Schwarzschild
black hole type to a 6D black string type. The specific heat of the localized
black holes is negative, and the entropy is greater than or nearly equal to
that of the 6D black strings with the same thermodynamic mass. The large
localized black holes show flattened horizon geometries, and the intrinsic
curvature of the horizon four-geometry becomes negative near the brane. Our
results indicate that the recovery mechanism of lower-dimensional Einstein
gravity on the brane works even in the presence of the black holes.Comment: 17 pages, 9 figures, RevTeX4, typos correcte
Brane World Dynamics and Conformal Bulk Fields
In the Randall-Sundrum scenario we investigate the dynamics of a spherically
symmetric 3-brane world when matter fields are present in the bulk. To analyze
the 5-dimensional Einstein equations we employ a global conformal
transformation whose factor characterizes the symmetric warp. We find a
new set of exact dynamical collapse solutions which localize gravity in the
vicinity of the brane for a stress-energy tensor of conformal weight -4 and a
warp factor that depends only on the coordinate of the fifth dimension.
Geometries which describe the dynamics of inhomogeneous dust and generalized
dark radiation on the brane are shown to belong to this set. The conditions for
singular or globally regular behavior and the static marginally bound limits
are discussed for these examples. Also explicitly demonstrated is complete
consistency with the effective point of view of a 4-dimensional observer who is
confined to the brane and makes the same assumptions about the bulk degrees of
freedom.Comment: 26 pages, latex, no figures. Minor revisions. Some references added.
Revised version to appear in Phys. Rev.
Neuroactive Steroids Reverse Tonic Inhibitory Deficits in Fragile X Syndrome Mouse Model
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. A reduction in neuronal inhibition mediated by γ-aminobutyric acid type A receptors (GABAARs) has been implicated in the pathophysiology of FXS. Neuroactive steroids (NASs) are known allosteric modulators of GABAAR channel function, but recent studies from our laboratory have revealed that NASs also exert persistent metabotropic effects on the efficacy of tonic inhibition by increasing the protein kinase C (PKC)-mediated phosphorylation of the α4 and β3 subunits which increase the membrane expression and boosts tonic inhibition. We have assessed the GABAergic signaling in the hippocampus of fragile X mental retardation protein (FMRP) knock-out (Fmr1 KO) mouse. The GABAergic tonic current in dentate gyrus granule cells (DGGCs) from 3- to 5-week-old (p21–35) Fmr1 KO mice was significantly reduced compared to WT mice. Additionally, spontaneous inhibitory post synaptic inhibitory current (sIPSC) amplitudes were increased in DGGCs from Fmr1 KO mice. While sIPSCs decay in both genotypes was prolonged by the prototypic benzodiazepine diazepam, those in Frm1-KO mice were selectively potentiated by RO15-4513. Consistent with this altered pharmacology, modifications in the expression levels and phosphorylation of receptor GABAAR subtypes that mediate tonic inhibition were seen in Fmr1 KO mice. Significantly, exposure to NASs induced a sustained elevation in tonic current in Fmr1 KO mice which was prevented with PKC inhibition. Likewise, exposure reduced elevated membrane excitability seen in the mutant mice. Collectively, our results suggest that NAS act to reverse the deficits of tonic inhibition seen in FXS, and thereby reduce aberrant neuronal hyperexcitability seen in this disorder
Rotating Brane World Black Holes
A five dimensional rotating black string in a Randall-Sundrum brane world is
considered. The black string intercepts the three brane in a four dimensional
rotating black hole. The geodesic equations and the asymptotics in this
background are discussed.Comment: 10 pages, minor changes, typos corrected and references adde
- …
