3,933 research outputs found

    Spin-chain model of a many-body quantum battery

    Get PDF
    Recently, it has been shown that energy can be deposited on a collection of quantum systems at a rate that scales super-extensively. Some of these schemes for `quantum batteries' rely on the use of global many-body interactions that take the batteries through a correlated short cut in state space. Here, we extend the notion of a quantum battery from a collection of a priori isolated systems to a many-body quantum system with intrinsic interactions. Specifically, we consider a one-dimensional spin chain with physically realistic two-body interactions. We find that the spin-spin interactions can yield an advantage in charging power over the non-interacting case, and we demonstrate that this advantage can grow super-extensively when the interactions are long ranged. However, we show that, unlike in previous work, this advantage is a mean-field interaction effect that does not involve correlations and that relies on the interactions being intrinsic to the battery.Comment: 9 pages, 6 figure

    Statistical Mechanics of DNA Rupture: Theory and Simulations

    Full text link
    We study the effects of the shear force on the rupture mechanism on a double stranded DNA. Motivated by recent experiments, we perform the atomistic simulations with explicit solvent to obtain the distributions of extension in hydrogen and covalent bonds below the rupture force. We obtain a significant difference between the atomistic simulations and the existing results in the iterature based on the coarse-grained models (theory and simulations). We discuss the possible reasons and improve the coarse-grained model by incorporating the consequences of semi-microscopic details of the nucleotides in its description. The distributions obtained by the modified model (simulations and theoretical) are qualitatively similar to the one obtained using atomistic simulations.Comment: 18 pages, 9 figures. Accepted in J. Chem. Phys. (2013). arXiv admin note: text overlap with arXiv:1104.305

    Experimental investigation of the flow evolution in the tributary of a 90° open channel confluence

    Get PDF
    Open channel and river confluences have received a lot of attention in hydraulic literature, because of the interesting flow phenomena observed. Features such as flow acceleration, curvature, separation, mixing and recovery are combined in the confluence area into a complex 3D flow pattern. Typically, the analysis of these features is started at the upstream corner of the confluence area, and the upstream main and tributary branches are considered to be the (uniform) upstream boundary conditions. However, several indications in literature suggest the existence of flow features upstream of the confluence corner. This paper confirms, by means of measurements in a laboratory, 90° confluence flume, considerable streamline curvature in the tributary branch, upstream of the confluence. Furthermore, it shows and quantifies velocity redistribution as well as local water surface super-elevation and depression in the tributary branch. Consequently, flow fea-ture analysis in confluences should start a considerable distance upstream of the confluence

    Crowdsourcing Cybersecurity: Cyber Attack Detection using Social Media

    Full text link
    Social media is often viewed as a sensor into various societal events such as disease outbreaks, protests, and elections. We describe the use of social media as a crowdsourced sensor to gain insight into ongoing cyber-attacks. Our approach detects a broad range of cyber-attacks (e.g., distributed denial of service (DDOS) attacks, data breaches, and account hijacking) in an unsupervised manner using just a limited fixed set of seed event triggers. A new query expansion strategy based on convolutional kernels and dependency parses helps model reporting structure and aids in identifying key event characteristics. Through a large-scale analysis over Twitter, we demonstrate that our approach consistently identifies and encodes events, outperforming existing methods.Comment: 13 single column pages, 5 figures, submitted to KDD 201

    Surface and interface study of pulsed-laser-deposited off-stoichiometric NiMnSb thin films on Si(100) substrate

    Get PDF
    We report a detailed study of surface and interface properties of pulsed-laser deposited NiMnSb films on Si (100) substrate as a function of film thickness. As the thickness of films is reduced below 35 nm formation of a porous layer is observed. Porosity in this layer increases with decrease in NiMnSb film thickness. These morphological changes of the ultra thin films are reflected in the interesting transport and magnetic properties of these films. On the other hand, there are no influences of compositional in-homogeneity and surface/interface roughness on the magnetic and transport properties of the films.Comment: 13 pages, 7 figures, Submitted to Phys. Rev.

    Quantum correlations in a few-atom spin-1 Bose-Hubbard model

    Get PDF
    We study the thermal quantum correlations and entanglement in spin-1 Bose-Hubbard model with two and three particles. While we use negativity to calculate entanglement, more general non-classical correlations are quantified using a new measure based on a necessary and sufficient condition for zero-discord state. We demonstrate that the energy level crossings in the ground state of the system are signalled by both the behavior of thermal quantum correlations and entanglement

    Invariant quantum discord in qubit-qutrit systems under local dephasing

    Get PDF
    We investigate the dynamics of quantum discord and entanglement for a class of mixed qubit-qutrit states assuming that only the qutrit is under the action of a dephasing channel. We demonstrate that even though the entanglement in the qubit-qutrit state disappears in a finite time interval, partial coherence left in the system enables quantum discord to remain invariant throughout the whole time evolution

    Charge Transport Through In-pSi (100) Schottky Barrier

    Get PDF

    Negativity and quantum discord in Davies environments

    Full text link
    We investigate the time evolution of negativity and quantum discord for a pair of non-interacting qubits with one being weakly coupled to a decohering Davies--type Markovian environment. At initial time of preparation, the qubits are prepared in one of the maximally entangled pure Bell states. In the limiting case of pure decoherence (i.e. pure dephasing), both, the quantum discord and negativity decay to zero in the long time limit. In presence of a manifest dissipative dynamics, the entanglement negativity undergoes a sudden death at finite time while the quantum discord relaxes continuously to zero with increasing time. We find that in dephasing environments the decay of the negativity is more propitious with increasing time; in contrast, the evolving decay of the quantum discord proceeds weaker for dissipative environments. Particularly, the slowest decay of the quantum discord emerges when the energy relaxation time matches the dephasing time.Comment: submitted for publicatio
    corecore