855 research outputs found
Characterization and Potential Applications of Dog Natural Killer Cells in Cancer Immunotherapy.
Natural killer (NK) cells of the innate immune system are a key focus of research within the field of immuno-oncology based on their ability to recognize and eliminate malignant cells without prior sensitization or priming. However, barriers have arisen in the effective translation of NK cells to the clinic, in part because of critical species differences between mice and humans. Companion animals, especially dogs, are valuable species for overcoming many of these barriers, as dogs develop spontaneous tumors in the setting of an intact immune system, and the genetic and epigenetic factors that underlie oncogenesis appear to be similar between dogs and humans. Here, we summarize the current state of knowledge for dog NK cells, including cell surface marker phenotype, key NK genes and genetic regulation, similarities and differences of dog NK cells to other mammals, especially human and mouse, expression of canonical inhibitory and activating receptors, ex vivo expansion techniques, and current and future clinical applications. While dog NK cells are not as well described as those in humans and mice, the knowledge of the field is increasing and clinical applications in dogs can potentially advance the field of human NK biology and therapy. Better characterization is needed to truly understand the similarities and differences of dog NK cells with mouse and human. This will allow for the canine model to speed clinical translation of NK immunotherapy studies and overcome key barriers in the optimization of NK cancer immunotherapy, including trafficking, longevity, and maximal in vivo support
The prevalence and distribution of the amyloidogenic transthyretin (TTR) V122I allele in Africa
Transthyretin (TTR) pV142I (rs76992529-A) is one of the 113 variants in the human TTR gene associated with systemic amyloidosis. It results from a G to A transition at a CG dinucleotide in the codon for amino acid 122 of the mature protein (TTR V122I). The allele frequency is 0.0173 in African Americans
A clonal Plasmodium falciparum population in an isolated outbreak of malaria in the Republic of Cabo Verde
We present the first parasitological, molecular and longitudinal analysis of an isolated outbreak of malaria. This outbreak
occurred on Santiago Island (Republic of Cabo Verde), a region where malaria is hypoendemic and controlled, and thus
the population is considered non-immune. Blood samples were collected from the inhabitants over 1 month and during
cross-sectional surveys in the following year. The presence and nature of the parasites was determined by PCR. Plasmodium
falciparum was the only species detected. Genetic analysis revealed that the circulating parasites were genetically homogeneous,
and probably clonal. Gametocytes were found throughout this period. Our data suggest that this represented a
focal outbreak, resulting in the infection of at least 40% of the villagers with a clonal parasite line. Thus, P. falciparum
infections can persist for at least 1 year in a substantial proportion (10%) of the hosts. Implications for malaria control
and the interpretation of epidemiological data are discussed
Assessement of Malaria Transmission in an Area with Very Low Mosquito Density
The increase in world travel in recent years, especially to and from areas where vector-borne diseases are endemic, has resulted in a substantial rise in imported cases of those diseases. In particular, malaria is a cause of concern. In those countries at the edge of its distribution, it can be difficult to distinguish between autochthonous and imported cases. However, distinguishing between the two is important because of the different allocation of resources to combat the disease that each requires.
In general, observation of the various stages of parasite
development in wild-caught female mosquitoes is considered evidence of autochthonous transmission. Observation of oocysts in the mosquito mid-gut testifies that mosquitoes are susceptible to infection but conclusions
cannot be reached about their ability to complete the transmission cycle. Perhaps the best indication of autochthonous transmission is microscopic observation of sporozoites in mosquito salivary glands, since this detects
parasites ready to be inoculated (BELER et al., 1990). Detection of circumsporozoite protein (CSP)(BURKOT, WILLIAMS & SCHNEIDER, 1984) in dry mosquito thoraxes, by Enzyme Linked Immunosorbent Assay (ELISA) is also widely used to determine transmission, especially when large numbers of mosquitoes need to be processed. Such assays provide information about the parasite species infecting the mosquito (BURKOT & WIRTZ, 1986; WIRTZ et al., 1987; BELER et al., 1990)
Genome landscapes and bacteriophage codon usage
Across all kingdoms of biological life, protein-coding genes exhibit unequal
usage of synonmous codons. Although alternative theories abound, translational
selection has been accepted as an important mechanism that shapes the patterns
of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns
of codon usage across 74 diverse bacteriophages that infect E. coli, P.
aeruginosa and L. lactis as their primary host. We introduce the concept of a
`genome landscape,' which helps reveal non-trivial, long-range patterns in
codon usage across a genome. We develop a series of randomization tests that
allow us to interrogate the significance of one aspect of codon usage, such a
GC content, while controlling for another aspect, such as adaptation to
host-preferred codons. We find that 33 phage genomes exhibit highly non-random
patterns in their GC3-content, use of host-preferred codons, or both. We show
that the head and tail proteins of these phages exhibit significant bias
towards host-preferred codons, relative to the non-structural phage proteins.
Our results support the hypothesis of translational selection on viral genes
for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference
Human candidate gene polymorphisms and risk of severe malaria in children in Kilifi, Kenya: a case-control association study
Background: Human genetic factors are important determinants of malaria risk. We investigated associations between multiple candidate polymorphisms—many related to the structure or function of red blood cells—and risk for severe Plasmodium falciparum malaria and its specific phenotypes, including cerebral malaria, severe malaria anaemia, and respiratory distress. Methods: We did a case-control study in Kilifi County, Kenya. We recruited as cases children presenting with severe malaria to the high-dependency ward of Kilifi County Hospital. We included as controls infants born in the local community between Aug 1, 2006, and Sept 30, 2010, who were part of a genetics study. We tested for associations between a range of candidate malaria-protective genes and risk for severe malaria and its specific phenotypes. We used a permutation approach to account for multiple comparisons between polymorphisms and severe malaria. We judged p values less than 0·005 significant for the primary analysis of the association between candidate genes and severe malaria. Findings: Between June 11, 1995, and June 12, 2008, 2244 children with severe malaria were recruited to the study, and 3949 infants were included as controls. Overall, 263 (12%) of 2244 children with severe malaria died in hospital, including 196 (16%) of 1233 with cerebral malaria. We investigated 121 polymorphisms in 70 candidate severe malaria-associated genes. We found significant associations between risk for severe malaria overall and polymorphisms in 15 genes or locations, of which most were related to red blood cells: ABO, ATP2B4, ARL14, CD40LG, FREM3, INPP4B, G6PD, HBA (both HBA1 and HBA2), HBB, IL10, LPHN2 (also known as ADGRL2), LOC727982, RPS6KL1, CAND1, and GNAS. Combined, these genetic associations accounted for 5·2% of the variance in risk for developing severe malaria among individuals in the general population. We confirmed established associations between severe malaria and sickle-cell trait (odds ratio [OR] 0·15, 95% CI 0·11–0·20; p=2·61 × 10−58), blood group O (0·74, 0·66–0·82; p=6·26 × 10−8), and –α3·7-thalassaemia (0·83, 0·76–0·90; p=2·06 × 10−6). We also found strong associations between overall risk of severe malaria and polymorphisms in both ATP2B4 (OR 0·76, 95% CI 0·63–0·92; p=0·001) and FREM3 (0·64, 0·53–0·79; p=3·18 × 10−14). The association with FREM3 could be accounted for by linkage disequilibrium with a complex structural mutation within the glycophorin gene region (comprising GYPA, GYPB, and GYPE) that encodes for the rare Dantu blood group antigen. Heterozygosity for Dantu was associated with risk for severe malaria (OR 0·57, 95% CI 0·49–0·68; p=3·22 × 10−11), as was homozygosity (0·26, 0·11–0·62; p=0·002). Interpretation: Both ATP2B4 and the Dantu blood group antigen are associated with the structure and function of red blood cells. ATP2B4 codes for plasma membrane calcium-transporting ATPase 4 (the major calcium pump on red blood cells) and the glycophorins are ligands for parasites to invade red blood cells. Future work should aim at uncovering the mechanisms by which these polymorphisms can result in severe malaria protection and investigate the implications of these associations for wider health. Funding: Wellcome Trust, UK Medical Research Council, European Union, and Foundation for the National Institutes of Health as part of the Bill & Melinda Gates Grand Challenges in Global Health Initiative
Novel Insights Into the Protective Role of Hemoglobin S and C Against Plasmodium falciparum Parasitemia.
Although hemoglobin S (HbS) and hemoglobin C (HbC) are well known to protect against severe Plasmodium falciparum malaria, conclusive evidence on their role against infection has not yet been obtained. Here we show, in 2 populations from Burkina Faso (2007-2008), that HbS is associated with a 70% reduction of harboring P. falciparum parasitemia at the heterozygous state (odds ratio [OR] for AS vs AA, 0.27; 95% confidence interval [CI], .11-.66; P = .004). There is no evidence of protection for HbC in the heterozygous state (OR for AC vs AA, 1.49; 95% CI, .69-3.21; P = .31), whereas protection even higher than that observed with AS is observed in the homozygous and double heterozygous states (OR for CC + SC vs AA, 0.04; 95% CI, .01-.29; P = .002). The abnormal display of parasite-adhesive molecules on the surface of HbS and HbC infected erythrocytes, disrupting the pathogenic process of sequestration, might displace the parasite from the deep to the peripheral circulation, promoting its elimination at the spleen level
Antitumour necrosis factor-α therapy for hidradenitis suppurativa: results from a national cohort study between 2000 and 2013
International audienceHidradenitis suppurativa (HS) is a frequent chronic inflammatory skin disease typically characterized by recurrent painful, deep inflammatory nodules of the axillary, breast, groin and gluteal areas. European recommendations are mainly based on expert opinion. Drug treatments are heterogenous (e.g., antibiotics, corticosteroids, retinoids) and lack consensus among expert centres. The most severe disease forms or those failing to respond to conventional drugs may be associated with worsened functional prognosis. Anti-tumor necrosis factor α (anti-TNFα) drugs have been prescribed in these cases. The results of randomized controlled trials (RCTs) are discordant. Three RCTs concluded to the efficacy of adalimumab (ADA), and two others did not detect any difference between infliximab (IFX) or etanercept (ETA) and placebo. Finally, data from the literature and reported experiences do not conclude on the efficacy of anti-TNFα drugs for HS. This article is protected by copyright. All rights reserve
Challenging the diagnosis of Cystic Fibrosis in a patient carrying the 186-8T/C allelic variant in the CF Transmembrane Conductance Regulator gene
BACKGROUND:
This report describe for the first time a clinical case with a CFTR allelic variant 186-8T/C (c.54-8 T/C) in intron 1 of CFTR and underline the importance of applying a combination of genetic and functional tests to establish or exclude a diagnosis of Cystic Fibrosis. In this case the diagnostic algorithm proposed for CF has been successfully applied at our Center and previous CF diagnosis assigned in a different Center was not confirmed.Case report: A 38 year-old Italian woman had been treated as affected by CF since 2010, following diagnosis based on sweat tests (reported values of 73 and 57 mEq/L) and a clinical history consistent with CF. No mutations were identified by first level of genetic analysis. Afterwards the patient referred to our center for assessing the relevance of these findings. The genetic variant 186-8T/C (c.54-8 T/C) in intron 1 of the CFTR gene was detected by sequencing. Low-level interstitial-alveolar infiltration was recorded by high-resolution computerized tomography. Lung function was normal and sputum and Broncho Alveolar Lavage cultures resulted bacteriologically negative. Sweat chloride levels was re-assessed and resulted with values of 57 and 35 mEq/L, with a borderline range between 40 and 60 mEq/L. Nasal Potential Difference measurements resulted in three reliable measurements consistent with a non-CF phenotype. Differential diagnosis with ciliary dyskinesia was excluded, as was exon 2 skipping of CFTR gene that might have caused a CFTR functional defect. Furthermore, single cell fluorescence analysis in response to cAMP agonists performed in patient's monocytes overlapped those obtained in healthy donors.
CONCLUSION:
We concluded that this patient was not affected by CF. This case highlights the need for referrals to highly specialized centers and the importance of combined functional and genetic tests in making a correct diagnosis. Moreover, we confirmed a correlation between NPD tracings and cell depolarization in monocytes providing a rationale for proposing the use of leukocytes as a potential support for CF diagnosis
- …
