392 research outputs found
Thermodynamic constraints on the amplitude of quantum oscillations
Magneto-quantum oscillation experiments in high temperature superconductors
show a strong thermally-induced suppression of the oscillation amplitude
approaching critical dopings---in support of a quantum critical origin of their
phase diagrams. We suggest that, in addition to a thermodynamic mass
enhancement, these experiments may directly indicate the increasing role of
quantum fluctuations that suppress the oscillation amplitude through inelastic
scattering. We show that the traditional theoretical approaches beyond
Lifshitz-Kosevich to calculate the oscillation amplitude in correlated metals
result in a contradiction with the third law of thermodynamics and suggest a
way to rectify this problem.Comment: PRB Rapid commun. (2017
Aggregation Behavior And Chromonic Liquid Crystal Properties Of An Anionic Monoazo Dye
X-ray scattering and various optical techniques are utilized to study the aggregation process and chromonic liquid crystal phase of the anionic monoazo dye Sunset Yellow FCF. The x-ray results demonstrate that aggregation involves pi-pi stacking of the molecules into columns, with the columns undergoing a phase transition to an orientationally ordered chromonic liquid crystal phase at high dye concentration. Optical absorption measurements on dilute solutions reveal that the aggregation takes place at all concentrations, with the average aggregation number increasing with concentration. A simple theory based on the law of mass action and an isodesmic aggregation process is in excellent agreement with the experimental data and yields a value for the bond energy between molecules in an aggregate. Measurements of the birefringence and order parameter are also performed as a function of temperature in the chromonic liquid crystal phase. The agreement between these results and a more complicated theory of aggregation is quite reasonable. Overall, these results both confirm that the aggregation process for some dyes is isodesmic and provide a second example of a well-characterized chromonic system
Single reconstructed Fermi surface pocket in an underdoped single layer cuprate superconductor
The observation of a reconstructed Fermi surface via quantum oscillations in
hole-doped cuprates opened a path towards identifying broken symmetry states in
the pseudogap regime. However, such an identification has remained inconclusive
due to the multi-frequency quantum oscillation spectra and complications
accounting for bilayer effects in most studies. We overcome these impediments
with high resolution measurements on the structurally simpler cuprate
HgBa2CuO4+d (Hg1201), which features one CuO2 plane per unit cell. We find only
a single oscillatory component with no signatures of magnetic breakdown
tunneling to additional orbits. Therefore, the Fermi surface comprises a single
quasi-two-dimensional pocket. Quantitative modeling of these results indicates
that biaxial charge-density-wave within each CuO2 plane is responsible for the
reconstruction, and rules out criss-crossed charge stripes between layers as a
viable alternative in Hg1201. Lastly, we determine that the characteristic gap
between reconstructed pockets is a significant fraction of the pseudogap
energy
Shoulder pain due to cervical radiculopathy: an underestimated long-term complication of herpes zoster virus reactivation?
Purpose
To evaluate if herpes zoster virus (HZV) reactivation may be considered in the aetiology of cervical radiculopathy.
Methods
The study group was composed of 110 patients (52 M-58F;mean age ± SD:46.5 ± 6.12; range:40-73) with a clinical diagnosis of cervical radiculopathy. Patients with signs of chronic damage on neurophysiological studies were submitted to an X-ray and to an MRI of the cervical spine in order to clarify the cause of the cervical radiculopathy and were investigated for a possible reactivation of HZV; HZV reactivation was considered as “recent” or “antique” if it occurs within or after 24 months from the onset of symptoms, respectively. Data were submitted to statistics.
Results
Thirty-eight patients (34,5%,16 M-22F) had a history of HZV reactivation: four (2 M-2F) were “recent” and 34 (14 M-20F) were “antique”. In 68 of 110 participants (61,8%,30 M-38F), pathological signs on X-ray and/or MRI of the cervical spine appeared; in the remaining 42 (38,2%,22 M-20F) X-ray and MRI resulted as negative. Among patients with HZV reactivation, seven (18,4%) had a “positive” X-ray-MRI while in 31 (81,6%) the instrumental exams were considered as negative. The prevalence of “antique” HZV reactivations was statistically greater in the group of patients with no pathological signs on X-ray/MRI of the cervical spine with respect to the group with a pathological instrumental exam (p < 0.01).
Conclusions
It may be useful to investigate the presence of a positive history of HZV reactivation and to consider it as a long-term complication of a cervical root inflammation especially in patients in which X-ray and MRI of the cervical spine did not show pathological findings
Quantum limit transport and destruction of the Weyl nodes in TaAs
Weyl fermions are a new ingredient for correlated states of electronic
matter. A key difficulty has been that real materials also contain non-Weyl
quasiparticles, and disentangling the experimental signatures has proven
challenging. We use magnetic fields up to 95 tesla to drive the Weyl semimetal
TaAs far into its quantum limit (QL), where only the purely chiral 0th Landau
levels (LLs) of the Weyl fermions are occupied. We find the electrical
resistivity to be nearly independent of magnetic field up to 50 tesla: unusual
for conventional metals but consistent with the chiral anomaly for Weyl
fermions. Above 50 tesla we observe a two-order-of-magnitude increase in
resistivity, indicating that a gap opens in the chiral LLs. Above 80 tesla we
observe strong ultrasonic attenuation below 2 kelvin, suggesting a
mesoscopically-textured state of matter. These results point the way to
inducing new correlated states of matter in the QL of Weyl semimetals
Controlling magnetic order and quantum disorder in molecule-based magnets.
We investigate the structural and magnetic properties of two molecule-based magnets synthesized from the same starting components. Their different structural motifs promote contrasting exchange pathways and consequently lead to markedly different magnetic ground states. Through examination of their structural and magnetic properties we show that [Cu(pyz)(H 2 O)(gly) 2 ](ClO 4 ) 2 may be considered a quasi-one-dimensional quantum Heisenberg antiferromagnet whereas the related compound [Cu(pyz)(gly)](ClO 4 ) , which is formed from dimers of antiferromagnetically interacting Cu 2+ spins, remains disordered down to at least 0.03 K in zero field but shows a field-temperature phase diagram reminiscent of that seen in materials showing a Bose-Einstein condensation of magnons
Scale-invariant magnetoresistance in a cuprate superconductor
The anomalous metallic state in high-temperature superconducting cuprates is
masked by the onset of superconductivity near a quantum critical point. Use of
high magnetic fields to suppress superconductivity has enabled a detailed study
of the ground state in these systems. Yet, the direct effect of strong magnetic
fields on the metallic behavior at low temperatures is poorly understood,
especially near critical doping, . Here we report a high-field
magnetoresistance study of thin films of \LSCO cuprates in close vicinity to
critical doping, . We find that the metallic state
exposed by suppressing superconductivity is characterized by a
magnetoresistance that is linear in magnetic field up to the highest measured
fields of T. The slope of the linear-in-field resistivity is
temperature-independent at very high fields. It mirrors the magnitude and
doping evolution of the linear-in-temperature resistivity that has been
ascribed to Planckian dissipation near a quantum critical point. This
establishes true scale-invariant conductivity as the signature of the strange
metal state in the high-temperature superconducting cuprates.Comment: 10 pages, 3 figure
Controlling magnetic order and quantum disorder in molecule-based magnets
We investigate the structural and magnetic properties of two molecule-based magnets synthesized from the same starting components. Their different structural motifs promote contrasting exchange pathways and consequently lead to markedly different magnetic ground states. Through examination of their structural and magnetic properties we show that [Cu(pyz)(H2O)(gly)2](ClO4)2 may be considered a quasi-one-dimensional quantum Heisenberg antiferromagnet whereas the related compound [Cu(pyz)(gly)](ClO4), which is formed from dimers of antiferromagnetically interacting Cu2+ spins, remains disordered down to at least 0.03 K in zero field but shows a field-temperature phase diagram reminiscent of that seen in materials showing a Bose-Einstein condensation of magnons
- …
