14 research outputs found
Embryonic Diapause Is Conserved across Mammals
Embryonic diapause (ED) is a temporary arrest of embryo development and is characterized by delayed implantation in the uterus. ED occurs in blastocysts of less than 2% of mammalian species, including the mouse (Mus musculus). If ED were an evolutionarily conserved phenomenon, then it should be inducible in blastocysts of normally non-diapausing mammals, such as domestic species. To prove this hypothesis, we examined whether blastocysts from domestic sheep (Ovis aries) could enter into diapause following their transfer into mouse uteri in which diapause conditions were induced. Sheep blastocysts entered into diapause, as demonstrated by growth arrest, viability maintenance and their ED-specific pattern of gene expression. Seven days after transfer, diapausing ovine blastocysts were able to resume growth in vitro and, after transfer to surrogate ewe recipients, to develop into normal lambs. The finding that non-diapausing ovine embryos can enter into diapause implies that this phenomenon is phylogenetically conserved and not secondarily acquired by embryos of diapausing species. Our study questions the current model of independent evolution of ED in different mammalian orders
Upgrade on risk analysis following the 080919 incident in the LHC sector 3-4
On 19th September 2008, during powering tests of the main dipole circuit in sector 3-4 of the LHC, an electrical fault occurred producing an electrical arc and resulting in mechanical and electrical damage, release of about 6 tons of helium from the magnet cold mass to the insulation vacuum enclosure and consequently to the tunnel, via the spring-loaded relief discs on the vacuum enclosure. The helium discharge from the cold mass to the vacuum enclosure exceeded by an order of magnitude, the maximum credible incident (MCI) flow described in the preliminary risk analysis performed in 1998. Based on the experience gained from the 19th September 2008 incident, a new MCI has been formulated and the cryogenic risk analysis has been revised and updated. The recommendations concerning the safety relief system protecting the vacuum vessels and the mechanical properties of the doors installed in the tunnel have been formulated
Risk analysis update of the LHC cryogenic system following the 19th September 2008 incident
On 19th September 2008, during powering tests of the main dipole circuit of the Large Hadron Collider, an electrical fault occurred producing an electrical arc and resulting in mechanical and electrical damage, release of helium from the magnet cold mass to the insulation vacuum enclosure and consequently to the tunnel, via the spring-loaded relief discs on the vacuum enclosure. The pressurization of the vacuum space exceeded significantly the allowed design value. Mathematical modeling based on a thermodynamic approach has enabled the revision of the helium discharge system protecting the vacuum enclosure against the over-pressurization in case of a redefined maximum credible incident (MCI) occurrence
Genomic stability of lyophilized sheep somatic cells before and after nuclear transfer.
The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT). Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA damage occurs randomly in the remaining 40%. Remarkably, lyophilized nuclei injected into enucleated oocytes are repaired by a robust DNA repairing activity of the oocytes, and show normal developmental competence. Cloned embryos derived from lyophylized cells exhibited chromosome and cellular composition comparable to those of embryos derived from fresh donor cells. These findings support the feasibility of lyophylization as a storage procedure of mammalian cells to be used for SCNT
