535 research outputs found
The mean ionic charge of silicon in 3HE-rich solar flares
Mean ionic charge of iron in 3He-rich solar flares and the average mean charge of Silicon for 23 #He-rich periods during the time interval from September 1978 to October 1979 were determined. It is indicated that the value of the mean charge state of Silicon is higher than the normal flare average by approximately 3 units and in perticular it is higher then the value predicted by resonant heating models for 3He-rich solar flares
Observation of pick-up ions in the solar wind: Evidence for the source of the anomalous cosmic ray component?
Singly ionized energetic helium has been observed in the solar wind by using the time of flight spectrometer SULEICA on the AMPTE/IRM satellite between September and December, 1984. The energy density spectrum shows a sharp cut off which is strongly correlated with the four fold solar wind bulk energy. The absolute flux of the He(+)ions of about 10000 ion/sq cm.s is present independent of the IPL magnetic field orientation. The most likely source is the neutral helium of the interstellar wind which is ionized by solar UV radiation. It is suggested that these particles represent the source of the anomalous cosmic ray component
Warm Breeze from the starboard bow: a new population of neutral helium in the heliosphere
We investigate the signals from neutral He atoms observed from Earth orbit in
2010 by IBEX. The full He signal observed during the 2010 observation season
can be explained as a superposition of pristine neutral interstellar He gas and
an additional population of neutral He that we call the Warm Breeze. The Warm
Breeze is approximately two-fold slower and 2.5 times warmer than the primary
interstellar He population, and its density in front of the heliosphere is ~7%
that of the neutral interstellar helium. The inflow direction of the Warm
Breeze differs by ~19deg from the inflow direction of interstellar gas. The
Warm Breeze seems a long-term feature of the heliospheric environment. It has
not been detected earlier because it is strongly ionized inside the
heliosphere, which brings it below the threshold of detection via pickup ion
and heliospheric backscatter glow observations, as well as by the direct
sampling of GAS/Ulysses. Possible sources for the Warm Breeze include (1) the
secondary population of interstellar helium, created via charge exchange and
perhaps elastic scattering of neutral interstellar He atoms on interstellar He+
ions in the outer heliosheath, or (2) a gust of interstellar He originating
from a hypothetic wave train in the Local Interstellar Cloud. A secondary
population is expected from models, but the characteristics of the Warm Breeze
do not fully conform to modeling results. If, nevertheless, this is the
explanation, IBEX-Lo observations of the Warm Breeze provide key insights into
the physical state of plasma in the outer heliosheath. If the second hypothesis
is true, the source is likely to be located within a few thousand of AU from
the Sun, which is the propagation range of possible gusts of interstellar
neutral helium with the Warm Breeze characteristics against dissipation via
elastic scattering in the Local Cloud.Comment: submitted to ApJ
Interstellar neutral helium in the heliosphere from IBEX observations. III. Mach number of the flow, velocity vector, and temperature from the first six years of measurements
We analyzed observations of interstellar neutral helium (ISN~He) obtained
from the Interstellar Boundary Explorer (IBEX) satellite during its first six
years of operation. We used a refined version of the ISN~He simulation model,
presented in the companion paper by Sokol_et al. 2015, and a sophisticated data
correlation and uncertainty system and parameter fitting method, described in
the companion paper by Swaczyna et al 2015. We analyzed the entire data set
together and the yearly subsets, and found the temperature and velocity vector
of ISN~He in front of the heliosphere. As seen in the previous studies, the
allowable parameters are highly correlated and form a four-dimensional tube in
the parameter space. The inflow longitudes obtained from the yearly data
subsets show a spread of ~6 degree, with the other parameters varying
accordingly along the parameter tube, and the minimum chi-square value is
larger than expected. We found, however, that the Mach number of the ISN~He
flow shows very little scatter and is thus very tightly constrained. It is in
excellent agreement with the original analysis of ISN~He observations from IBEX
and recent reanalyses of observations from Ulysses. We identify a possible
inaccuracy in the Warm Breeze parameters as the likely cause of the scatter in
the ISN~He parameters obtained from the yearly subsets, and we suppose that
another component may exist in the signal, or a process that is not accounted
for in the current physical model of ISN~He in front of the heliosphere. From
our analysis, the inflow velocity vector, temperature, and Mach number of the
flow are equal to lambda_ISNHe = 255.8 +/- 0.5 degree, beta_ISNHe = 5.16 +/-
0.10 degree, T_ISNHe = 7440 +/- 260 K, v_ISNHe = 25.8 +/- 0.4$ km/s, and
M_ISNHe = 5.079 +/- 0.028, with uncertainties strongly correlated along the
parameter tube.Comment: Updated reference
Effect of the heliospheric interface on the distribution of interstellar hydrogen atom inside the heliosphere
This paper deals with the modeling of the interstellar hydrogen atoms (H
atoms) distribution in the heliosphere. We study influence of the heliospheric
interface, that is the region of the interaction between solar wind and local
interstellar medium, on the distribution of the hydrogen atoms in vicinity of
the Sun. The distribution of H atoms obtained in the frame of the
self-consistent kinetic-gasdynamic model of the heliospheric interface is
compared with a simplified model which assumes Maxwellian distribution of H
atoms at the termination shock and is called often as 'hot' model. This
comparison shows that the distribution of H atoms is significantly affected by
the heliospheric interface not only at large heliocentric distances, but also
in vicinity of the Sun at 1-5 AU. Hence, for analysis of experimental data
connected with direct or undirect measurements of the interstellar atoms one
necessarily needs to take into account effects of the heliospheric interface.
In this paper we propose a new model that is relatively simple but takes into
account all major effects of the heliospheric interface. This model can be
applied for analysis of backscattered Ly-alpha radiation data obtained on board
of different spacecraft.Comment: published in Astronomy Letter
537Microparticles and exosomes differentially impact on endothelial cell function in coronary artery disease
Background and Purpose: Microparticles (MPs) and exosomes are released by cells using different mechanisms. Thus, quantitative as well as qualitative changes of both particle populations, MPs and exosomes, in patients with coronary artery disease (CAD) might reflect an altered activation status of the endothelium, platelets and leukocytes. Moreover, they might exert differential effects on the target organs, such as the endothelium. Yet, alterations in both populations have not been studied side-by-side so far. The aim of the study was to compare the impact of MPs and exosomes from healthy subjects and CAD patients on endothelial cell (EC) functional characteristics. Methods: MPs and exosomes were isolated by stepwise filtration and ultracentrifugation from citrate-plasma and verified by electron microscopy and dynamic light scattering. MP and exosome fractions, as well as the vehicle (PBS), were added to human arterial ECs and EC apoptosis, number, size, capacity for in vitro-reendothelialisation after scratching, expression of adhesion molecules ICAM-1 and VCAM-1 were assessed. In parallel, platelet-, endothelial- and leukocyte-derived MPs were quantified. In a separate sub-study, the same parameters were assessed in plasma of CAD patients undergoing standard medical rehabilitation or an exercise-based cardiac rehabilitation programme. Results: MPs of healthy, but not of CAD patients supported in vitro re-endothelialisation, while exosomes had no influence. Exercise, but not standard rehabilitation improved CAD MP capacity to support in vitro rehabilitation. This was negatively correlated to the number of leukocyte- and endothelial-derived MPs, but not total or platelet MPs. EC number was negatively affected by exposure to CAD MPs. ANCOVA analysis identified disease, but not the particle type as influencing factor. Instead, apoptotic cell death was influenced by particle type, but not by the disease, and was not altered in rehabilitation. Similarly, ICAM-1 and VCAM-1 expression were enhanced on ECs after incubation with exosomes, but not with MPs, with no effect of disease or rehabilitation. Conclusion: MPs and exosomes differentially affect endothelial cell function and underlie differential modulation in disease and rehabilitation. Those findings might in the future help to optimize and monitor cardiovascular therap
Global Anisotropies in TeV Cosmic Rays Related to the Sun's Local Galactic Environment from IBEX
Observations with the Interstellar Boundary Explorer (IBEX) have shown enhanced energetic neutral atom (ENA) emission from a narrow, circular ribbon likely centered on the direction of the local interstellar medium (LISM) magnetic field. Here, we show that recent determinations of the local interstellar velocity, based on interstellar atom measurements with IBEX, are consistent with the interstellar modulation of high-energy (tera-electron volts, TeV) cosmic rays and diffusive propagation from supernova sources revealed in global anisotropy maps of ground-based high-energy cosmic-ray observatories (Milagro, Asg, and IceCube). Establishing a consistent local interstellar magnetic field direction using IBEX ENAs at hundreds to thousands of eV and galactic cosmic rays at tens of TeV has wide-ranging implications for the structure of our heliosphere and its interactions with the LISM, which is particularly important at the time when the Voyager spacecraft are leaving our heliosphere
Non-Maxwellian Proton Velocity Distributions in Nonradiative Shocks
The Balmer line profiles of nonradiative supernova remnant shocks provide the
means to measure the post-shock proton velocity distribution. While most
analyses assume a Maxwellian velocity distribution, this is unlikely to be
correct. In particular, neutral atoms that pass through the shock and become
ionized downstream form a nonthermal distribution similar to that of pickup
ions in the solar wind. We predict the H alpha line profiles from the
combination of pickup protons and the ordinary shocked protons, and we consider
the extent to which this distribution could affect the shock parameters derived
from H alpha profiles. The Maxwellian assumption could lead to an underestimate
of shock speed by up to about 15%. The isotropization of the pickup ion
population generates wave energy, and we find that for the most favorable
parameters this energy could significantly heat the thermal particles.
Sufficiently accurate profiles could constrain the strength and direction of
the magnetic field in the shocked plasma, and we discuss the distortions from a
Gaussian profile to be expected in Tycho's supernova remnant.Comment: 13 pages, 6 figure
Anti-HIV-1 activity of cellulose acetate phthalate: Synergy with soluble CD4 and induction of "dead-end" gp41 six-helix bundles
BACKGROUND: Cellulose acetate phthalate (CAP), a promising candidate microbicide for prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1) and other sexually transmitted disease (STD) pathogens, was shown to inactivate HIV-1 and to block the coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study CAP binding to HIV-1 complexes with soluble CD4 (sCD4) and its consequences, including changes in the conformation of the envelope glycoprotein gp41 within virus particles. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to study CAP binding to HIV-1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using antibodies specific for the α-helical core domain of gp41. RESULTS: 1) Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2) there is synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3) treatment of HIV-1 with CAP induced the formation of gp41 six-helix bundles. CONCLUSIONS: CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41 six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with target cells thus preventing infection
- …
