307 research outputs found

    High-spatial-resolution imaging of thermal emission from debris disks

    Full text link
    We have obtained sub-arcsec mid-IR images of a sample of debris disks within 100 pc. For our sample of nineteen A-type debris disk candidates chosen for their IR excess, we have resolved, for the first time, five sources plus the previously resolved disk around HD 141569. Two other sources in our sample have been ruled out as debris disks since the time of sample selection. Three of the six resolved sources have inferred radii of 1-4 AU (HD 38678, HD 71155, and HD 181869), and one source has an inferred radius ~10-30 AU (HD 141569). Among the resolved sources with detections of excess IR emission, HD 71155 appears to be comparable in size (r~2 AU) to the solar system's asteroid belt, thus joining Zeta Lep (HD 38678, reported previously) to comprise the only two resolved sources of that class. Two additional sources (HD 95418 and HD 139006) show spatial extent that implies disk radii of ~1-3 AU, although the excess IR fluxes are not formally detected with better than 2-sigma significance. For the unresolved sources, the upper limits on the maximum radii of mid-IR disk emission are in the range ~1-20 AU, four of which are comparable in radius to the asteroid belt. We have compared the global color temperatures of the dust to that expected for the dust in radiative equilibrium at the distances corresponding to the observed sizes or limits on the sizes. In most cases, the temperatures estimated via these two methods are comparable, and therefore, we see a generally consistent picture of the inferred morphology and the global mid-IR emission. Finally, while our sample size is not statistically significant, we notice that the older sources (>200 Myr) host much warmer dust (T > 400 K) than younger sources (in the 10s of Myr).Comment: 46 pages, 12 figure

    An active asteroid belt causing the UX Ori phenomenon in RZ Psc

    Full text link
    We report the discovery of mid-infrared excess emission in the young object RZ Psc. The excess constitutes ~8% of its Lbol, and is well fit by a single 500K black-body implying a dust free region within 0.7AU for optically thick dust. The object displays dust obscuration events (UXOR behaviour) with a time-scale that suggests dusty material on orbits of 0.5AU. We also report a 12.4 year cyclical photometric variability which can be interpreted as due to perturbations in the dust distribution. The system is characterized by a high inclination, marginal extinction (during bright photometric states), a single temperature for the warm dust, and an age estimate which puts the star beyond the formation stage. We propose that the dust occultation events present a dynamical view of an active asteroid belt whose collisional products sporadically obscure the central star.Comment: Accepted for A&A letter

    Constraints on the presence of SiO gas in the debris disk of HD 172555

    Full text link
    We have carried out two sets of observations to quantify the properties of SiO gas in the unusual HD 172555 debris disk: (1) a search for the J=8-7 rotational transition from the vibrational ground state, carried out with the APEX sub-millimeter telescope and heterodyne receiver at 863 microns, and (2) a search at 8.3 microns for the P(17) ro-vibrational transition of gas phase SiO, carried out with VLT/VISIR with a resolution, λ/Δλ\lambda/\Delta\lambda, of 30000. The APEX measurement resulted in a 3 σ\sigma non-detection of an interstellar feature, but only an upper limit to emission at the radial velocity and linewidth expected from HD 172555. The VLT/VISIR result was also an upper limit. These were used to provide limits for the abundance of gas phase SiO, for a range of temperatures. The upper limit from our APEX detection, assuming an 8000 K primary star photospheric excitation, falls more than an order of magnitude below the self-shielding stability threshold derived by Johnson et al. (2012). Our results thus favor a solid-state origin for the 8.3 micron feature seen in the Spitzer IRS spectrum of the circumstellar excess emission, and the production of circumstellar O+^+ and Si+^+ by SiO UV photolysis. The implications of these estimates are explored in the framework of models of the HD 172555 circumstellar disk.Comment: three figure

    Resolving the terrestrial planet forming regions of HD113766 and HD172555 with MIDI

    Full text link
    We present new MIDI interferometric and VISIR spectroscopic observations of HD113766 and HD172555. Additionally we present VISIR 11um and 18um imaging observations of HD113766. These sources represent the youngest (16Myr and 12Myr old respectively) debris disc hosts with emission on <<10AU scales. We find that the disc of HD113766 is partially resolved on baselines of 42-102m, with variations in resolution with baseline length consistent with a Gaussian model for the disc with FWHM of 1.2-1.6AU (9-12mas). This is consistent with the VISIR observations which place an upper limit of 0."14 (17AU) on the emission, with no evidence for extended emission at larger distances. For HD172555 the MIDI observations are consistent with complete resolution of the disc emission on all baselines of lengths 56-93m, putting the dust at a distance of >1AU (>35mas). When combined with limits from TReCS imaging the dust at ~10um is constrained to lie somewhere in the region 1-8AU. Observations at ~18um reveal extended disc emission which could originate from the outer edge of a broad disc, the inner parts of which are also detected but not resolved at 10um, or from a spatially distinct component. These observations provide the most accurate direct measurements of the location of dust at 1-8AU that might originate from the collisions expected during terrestrial planet formation. These observations provide valuable constraints for models of the composition of discs at this epoch and provide a foundation for future studies to examine in more detail the morphology of debris discs.Comment: 22 pages, 19 figures, accepted for publication in MNRA

    12 and 18 micron images of dust surrounding HD 32297

    Full text link
    We present the first subarcsecond-resolution images at multiple mid-IR wavelengths of the thermally-emitting dust around the A0 star HD 32297. Our observations with T-ReCS at Gemini South reveal a nearly edge-on resolved disk at both 11.7 microns and 18.3 microns that extends ~150 AU in radius. The mid-IR is the third wavelength region in which this disk has been resolved, following coronagraphic observations by others of the source at optical and near-IR wavelengths. The global mid-IR colors and detailed consideration of the radial color-temperature distribution imply that the central part of the disk out to ~80 AU is relatively deficient in dust.Comment: 4 pages, 3 figures; accepted for publication in ApJ

    Five Debris Disks Newly Revealed in Scattered Light from the HST NICMOS Archive

    Full text link
    We have spatially resolved five debris disks (HD 30447, HD 35841, HD 141943, HD 191089, and HD 202917) for the first time in near-infrared scattered light by reanalyzing archival Hubble Space Telescope (HST)/NICMOS coronagraphic images obtained between 1999 and 2006. One of these disks (HD 202917) was previously resolved at visible wavelengths using HST/Advanced Camera for Surveys. To obtain these new disk images, we performed advanced point-spread function subtraction based on the Karhunen-Loeve Image Projection (KLIP) algorithm on recently reprocessed NICMOS data with improved detector artifact removal (Legacy Archive PSF Library And Circumstellar Environments Legacy program). Three of the disks (HD 30447, HD 35841, and HD 141943) appear edge-on, while the other two (HD 191089 and HD 202917) appear inclined. The inclined disks have been sculpted into rings; in particular, the disk around HD 202917 exhibits strong asymmetries. All five host stars are young (8-40 Myr), nearby (40-100 pc) F and G stars, and one (HD 141943) is a close analog to the young sun during the epoch of terrestrial planet formation. Our discoveries increase the number of debris disks resolved in scattered light from 19 to 23 (a 21% increase). Given their youth, proximity, and brightness (V = 7.2 to 8.5), these targets are excellent candidates for follow-up investigations of planet formation at visible wavelengths using the HST/STIS coronagraph, at near-infrared wavelengths with the Gemini Planet Imager (GPI) and Very Large Telescope (VLT)/SPHERE, and at thermal infrared wavelengths with the James Webb Space Telescope NIRCam and MIRI coronagraphs.Comment: 6 pages, 1 figure, 1 tabl
    corecore