4 research outputs found

    Three dimensional resonating valence bond liquids and their excitations

    Full text link
    We show that there are two types of RVB liquid phases present in three-dimensional quantum dimer models, corresponding to the deconfining phases of U(1) and Z_2 gauge theories in d=3+1. The former is found on the bipartite cubic lattice and is the generalization of the critical point in the square lattice quantum dimer model found originally by Rokhsar and Kivelson. The latter exists on the non-bipartite face-centred cubic lattice and generalizes the RVB phase found earlier by us on the triangular lattice. We discuss the excitation spectrum and the nature of the ordering in both cases. Both phases exhibit gapped spinons. In the U(1) case we find a collective, linearly dispersing, transverse excitation, which is the photon of the low energy Maxwell Lagrangian and we identify the ordering as quantum order in Wen's sense. In the Z_2 case all collective excitations are gapped and, as in d=2, the low energy description of this topologically ordered state is the purely topological BF action. As a byproduct of this analysis, we unearth a further gapless excitation, the pi0n, in the square lattice quantum dimer model at its critical point.Comment: 9 pages, 2 figure

    Quantum Phase Transition in the SU(4) Spin-Orbital Model on the Triangular Lattice

    Full text link
    Motivated by the absence of cooperative Jahn-Teller effect in LiNiO2 and BaVS3, two layered oxides with triangular planes, we study the SU(4) symmetric spin-orbital model on the triangular lattice. Upon reducing the next-nearest neighbour coupling, we show that the system undergoes a quantum phase transition to a liquid phase. A variational approach to this liquid phase shows that simple types of long-range correlations are suppressed, suggesting that it is stable against lattice distortions.Comment: 5 pages, 5 figures, RevTex
    corecore