2,206 research outputs found
The Mere Categorization Effect: How the Presence of Categories Increases Choosers' Perceptions of Assortment Variety
What is the effect of option categorization on choosers’ satisfaction? A combination of field and laboratory experiments reveals that the mere presence of categories, irrespective of their content, positively influences the satisfaction of choosers who are unfamiliar with the choice domain. This “mere categorization effect” is driven by a greater number of categories signaling greater variety amongst the available options, which allows for a sense of self-determination from choice. This effect, however, is attenuated among choosers who are familiar with the choice domain, who do not rely on the presence of categories to perceive the variety available.
Soft Listeria: actin-based propulsion of liquid drops
We study the motion of oil drops propelled by actin polymerization in cell
extracts. Drops deform and acquire a pear-like shape under the action of the
elastic stresses exerted by the actin comet. We solve this free boundary
problem and calculate the drop shape taking into account the elasticity of the
actin gel and the variation of the polymerization velocity with normal stress.
The pressure balance on the liquid drop imposes a zero propulsive force if
gradients in surface tension or internal pressure are not taken into account.
Quantitative parameters of actin polymerization are obtained by fitting theory
to experiment.Comment: 5 pages, 4 figure
Dynamic coordinated control laws in multiple agent models
We present an active control scheme of a kinetic model of swarming. It has
been shown previously that the global control scheme for the model, presented
in \cite{JK04}, gives rise to spontaneous collective organization of agents
into a unified coherent swarm, via a long-range attractive and short-range
repulsive potential. We extend these results by presenting control laws whereby
a single swarm is broken into independently functioning subswarm clusters. The
transition between one coordinated swarm and multiple clustered subswarms is
managed simply with a homotopy parameter. Additionally, we present as an
alternate formulation, a local control law for the same model, which implements
dynamic barrier avoidance behavior, and in which swarm coherence emerges
spontaneously.Comment: 20 pages, 6 figure
Dynamics of an inchworm nano-walker
An inchworm processive mechanism is proposed to explain the motion of dimeric
molecular motors such as kinesin. We present here preliminary results for this
mechanism focusing on observables like mean velocity, coupling ratio and
efficiency versus ATP concentration and the external load F.Comment: 6 pages, 2 figure
Symmetry-Breaking Motility
Locomotion of bacteria by actin polymerization, and in vitro motion of
spherical beads coated with a protein catalyzing polymerization, are examples
of active motility. Starting from a simple model of forces locally normal to
the surface of a bead, we construct a phenomenological equation for its motion.
The singularities at a continuous transition between moving and stationary
beads are shown to be related to the symmetries of its shape. Universal
features of the phase behavior are calculated analytically and confirmed by
simulations. Fluctuations in velocity are shown to be generically
non-Maxwellian and correlated to the shape of the bead.Comment: 4 pages, 2 figures, REVTeX; formatting of references correcte
Branching, Capping, and Severing in Dynamic Actin Structures
Branched actin networks at the leading edge of a crawling cell evolve via
protein-regulated processes such as polymerization, depolymerization, capping,
branching, and severing. A formulation of these processes is presented and
analyzed to study steady-state network morphology. In bulk, we identify several
scaling regimes in severing and branching protein concentrations and find that
the coupling between severing and branching is optimally exploited for
conditions {\it in vivo}. Near the leading edge, we find qualitative agreement
with the {\it in vivo} morphology.Comment: 4 pages, 2 figure
Recommended from our members
Time, Money, and Morality
Money, a resource that absorbs much daily attention, seems to be present in much unethical behavior thereby suggesting that money itself may corrupt. This research examines a way to offset such potentially deleterious effects—by focusing on time, a resource that tends to receive less attention than money but is equally ubiquitous in our daily lives. Across four experiments, we examine whether shifting focus onto time can salvage individuals' ethicality. We found that implicitly activating the construct of time, rather than money, leads individuals to behave more ethically by cheating less. We further found that priming time reduces cheating by making people reflect on who they are. Implications for the use of time versus money primes in discouraging or promoting dishonesty are discussed
The Force-Velocity Relation for Growing Biopolymers
The process of force generation by the growth of biopolymers is simulated via
a Langevin-dynamics approach. The interaction forces are taken to have simple
forms that favor the growth of straight fibers from solution. The
force-velocity relation is obtained from the simulations for two versions of
the monomer-monomer force field. It is found that the growth rate drops off
more rapidly with applied force than expected from the simplest theories based
on thermal motion of the obstacle. The discrepancies amount to a factor of
three or more when the applied force exceeds 2.5kT/a, where a is the step size
for the polymer growth. These results are explained on the basis of restricted
diffusion of monomers near the fiber tip. It is also found that the mobility of
the obstacle has little effect on the growth rate, over a broad range.Comment: Latex source, 9 postscript figures, uses psfig.st
Caracterización y biocompatibilidad de matrices de colágeno para uso en regeneración ósea
El colágeno, la proteína más abundante del hueso, juega un rol fundamental en la integridad biológica y estructural del esqueleto. Previamente se han usado membranas de colageno sin un orden molecular, para fabricar matrices para la regeneración del tejido óseo. El colágeno es así un candidato natural para mejorar o reemplazar tejidos u órganos dañados. El objetivo del presente trabajo es caracterizar matrices de colágeno ordenado o no (con una distribución al azar) y estudiar su biocompatiblidad con células óseas en cultivo. Se estilizó colágeno extraído del tendón de Aquiles bovino, nativo, obtenido en nuestro laboratorio con un grado de pureza de un 98% [Ruderman et al., 2007]. Se fabricaron matrices de colágeno no ordenado y de colágeno ordenado según patentes. Las características de la superficie de membranas fueron observadas por SEM y microscopia óptica (coloración de Sirius red). Las membranas ordenadas mostraron una topografía típica en forma de canales en correlación con un ordenamiento molecular. Se evaluó la biocompatibilidad de células osteoblásticas y macrófagos murinos crecidos sobre los dos tipos de películas de colágeno (No ordenado y ordenado). Se estudió la adhesión, proliferación (conteo de células teñidas con Giemsa) y diferenciación al fenotipo osteoblasto (expresión de fosfatasa alcalina y nódulos de mineralización). Se encontró que las células (osteoblasticas y macrófagos) crecidas sobre las matrices de colágeno ordenado se adhieren mas (1.5-1.7 veces) y crecen mejor (2.3–2.6 veces) que sobre las matrices de colágeno no ordenado. Macrófagos Raw 264.7 teñidos con naranja de acridina revelaron mayor cantidad de células muertas sobra las matrices de colágeno no ordenado. Preosteoblástos MC3T3E1 (4 semanas en medio osteogénico) expresaron más fosfatasa alcalina (2.6 veces) y mineral en la matriz de colágeno. Los estudios preliminares sugieren que las matrices preparadas en base a colágeno natural podrían ser aplicadas en la regeneración del tejido
Single cell mechanics: stress stiffening and kinematic hardening
Cell mechanical properties are fundamental to the organism but remain poorly
understood. We report a comprehensive phenomenological framework for the
nonlinear rheology of single fibroblast cells: a superposition of elastic
stiffening and viscoplastic kinematic hardening. Our results show, that in
spite of cell complexity its mechanical properties can be cast into simple,
well-defined rules, which provide mechanical cell strength and robustness via
control of crosslink slippage.Comment: 4 pages, 6 figure
- …
