103 research outputs found
Reversal of Right Ventricular Hypertrophy and Dysfunction by Prostacyclin in a Rat Model of Severe Pulmonary Arterial Hypertension
Optimization of Support Structures for Offshore Wind Turbines Using Genetic Algorithm with Domain-Trimming
The powerful genetic algorithm optimization technique is augmented with an innovative “domain-trimming” modification. The resulting adaptive, high-performance technique is called Genetic Algorithm with Domain-Trimming (GADT). As a proof of concept, the GADT is applied to a widely used benchmark problem. The 10-dimensional truss optimization benchmark problem has well documented global and local minima. The GADT is shown to outperform several published solutions. Subsequently, the GADT is deployed onto three-dimensional structural design optimization for offshore wind turbine supporting structures. The design problem involves complex least-weight topology as well as member size optimizations. The GADT is applied to two popular design alternatives: tripod and quadropod jackets. The two versions of the optimization problem are nonlinearly constrained where the objective function is the material weight of the supporting truss. The considered design variables are the truss members end node coordinates, as well as the cross-sectional areas of the truss members, whereas the constraints are the maximum stresses in members and the maximum displacements of the nodes. These constraints are managed via dynamically modified, nonstationary penalty functions. The structures are subject to gravity, wind, wave, and earthquake loading conditions. The results show that the GADT method is superior in finding best discovered optimal solutions
Optimal Control of Magnetorheological Fluid Dampers for Seismic Isolation of Structures
This paper presents the modeling and control of a magnetorheological (MR) damper, installed in Chevron configuration, at the base of a 20-story benchmark building. The building structural model is created using the commercial software package ETABS. The MR damper model is derived from Bouc-Wen hysteresis model which provides the critical nonlinear dynamics that best represents the MR damper under a wide range of operating conditions. System identification is used to derive a low-order nonlinear model that best mimics the nonlinear dynamics of the actual MR damper. Dynamic behavior of this low-order model is tested and validated over a range of inputs. The damper model has proven its validity to a high degree of accuracy against the nonlinear model. A Kalman filter is designed to best estimate the state of the structure-damper system for feedback implementation purposes. Using the estimated states, an LQG-based compensator is designed to control the MR damper under earthquake loads. To demonstrate the effectiveness of this control strategy, four historical earthquakes are applied to the structure. Controlled and uncontrolled floor accelerations and displacements at key locations are compared. Results of the optimally controlled model demonstrate superior performance in comparison to the uncontrolled model.</jats:p
Computationally-efficient high-fidelity nonlinear FEA of seismically isolated post-tensioned RC bridges
This study presents a novel computationally efficient high-fidelity nonlinear FEA (NLFEA) methodology for prestressed RC bridges constructed in the UAE and seismically isolated with elastomeric bearings. Specifically, the presented NLFEA methodology, using 3D solid brick elements, is shown to overcome traditional prohibitive numerical burdens. This is demonstrated without compromising accuracy or upscaling applicability and appropriateness. The proposed NLFEA approach is highlighted through detailed modeling of RC bridges’ non-traditional structural components and loading aspects (elastomeric bearings and post-tension prestressing cables). The mechanical behavior of elastomeric isolators and the RC continua, including cracking and other nonlinear phenomena, are captured via 3D solid brick elements. Moreover, the modeling procedure accurately represents the post-tension tendons’ prestressing forces and the associated effects on the RC elements. The prestressing forces are incorporated within the tendon elements via insightful manipulations of stepwise initial conditions and internal force adjustments. Additionally, load-carrying capacity determination for the elastomeric bearings was achieved by conducting a parametric investigation to capture their mechanical behavior adequately. Eventually, the analysis of a full-scale bridge is presented in this paper. The post-tensioned RC bridge understudy spans 100 m over eight elastomeric (natural rubber) seismic isolator bearings. Twelve post-tension prestressing cables are utilized to provide the bridge with continuous internal tension-balancing forces. A high-fidelity detailed FEA model of the complete bridge is developed and validated against a SAP2000 FEA model. It is shown that reasonable computational efforts can be expected without compromising the accuracy of the results
Impact of diverse seismic hazard estimates on design and performance of Steel Plate Shear Walls buildings in Dubai, UAE
Data for Interaction Diagrams of Geopolymer FRC Slender Columns with Double-Layer GFRP and Steel Reinforcement
This article provides data of axial load-bending moment capacities of plain and fiber-reinforced geopolymer concrete (GPC, FRGPC) columns. The columns were reinforced by double layers of longitudinal and transverse reinforcement using steel and/or glass-fiber-reinforced polymer (GFRP) bars. The concrete fiber-reinforcing materials included steel and synthetic fibers. The columns data included different parameters like the longitudinal reinforcement ratio, the applied load eccentricity, and the columns’ slenderness ratio. The data was collected from different analysis output files then sorted and tabulated in usable formatted tables. The data can support the development of design axial load-bending moment interactions. In addition, further processing of the data can yield analytical strength curves which are useful in determining the columns stability under different structural loading configurations. Researchers and educators can make use of these data for illustrations and prospective new research suggestions.</jats:p
Simulation of RC Beams during Fire Events Using a Nonlinear Numerical Fully Coupled Thermal-Stress Analysis
The collapse and deterioration of infrastructures due to fire events are documented annually. These fire incidents result in multiple deaths and property loss. In this paper, a reliable and practical numerical methodology was introduced to facilitate the whole process of fire simulations and increase the practicality of performing comprehensive parametric studies in the future. These parametric studies are crucial for understanding the factors that affect thermal–structural responses and avoiding the high cost of destructive tests. The proposed algorithm comprises a fully nonlinear coupled thermal-stress analysis involving thermal and structural material nonlinearity and the thermal–structural response during a fire. A detailed numerical modeling analysis was performed with ABAQUS to achieve the proposed algorithm. The results of the proposed numerical methodology were validated against published experimental work. The experimental work includes a full-scale RC beam loaded with working loads and standard heating conditions to simulate real-life scenarios. The tested beam failed during the fire, and its fire resistance was recorded. The results demonstrated a good correlation with the experimental results in thermal and structural responses. Moreover, this paper presents the direct coupling technique (DCT) and the advantages of using DCT over the traditional sequential coupling technique (SCT).</jats:p
Optimized frequency-based foundation design for wind turbine towers utilizing soil-structure interaction
This study illustrates design optimization for multiple wind towers located at different villages in Alaska. The towers are supported by two different types of foundations: large mat or deep piles foundations. Initially, a reinforced concrete (RC) mat foundation was proposed. Where soil conditions required it, a pile foundation solution was devised utilizing a 30 in thick RC mat containing an embedded steel grillage of W18 beams and supported by 20–24 in grouted or un-grouted piles. For faster installation and lower construction cost, all-steel foundations were proposed for these remote Alaska sites. The new all-steel design was found to reduce the natural frequencies of the structural system due to softening the foundation. Thus, the tower–foundation system could potentially become near-resonant with the operational frequencies of the wind turbine. Consequently, the likelihood of structural damage or even the collapse is increased.
A detailed 3D finite-element model of the tower–foundation–pile system with RC foundation was created using SAP2000. Soil springs were included in the model based on soil properties obtained from the geotechnical investigation. The natural frequency from the model was verified against the tower manufacturer analytical and experimental values. When piles were used, numerous iterations were carried out to eliminate the need for the RC and optimize the design. An optimized design was achieved with enough separation between the natural and operational frequencies. The design successfully avoids damage to the structural system, while eliminating the need for any RC in most cases
Simulation of RC Beams during Fire Events Using a Nonlinear Numerical Fully Coupled Thermal-Stress Analysis
The collapse and deterioration of infrastructures due to fire events are documented annually. These fire incidents result in multiple deaths and property loss. In this paper, a reliable and practical numerical methodology was introduced to facilitate the whole process of fire simulations and increase the practicality of performing comprehensive parametric studies in the future. These parametric studies are crucial for understanding the factors that affect thermal–structural responses and avoiding the high cost of destructive tests. The proposed algorithm comprises a fully nonlinear coupled thermal-stress analysis involving thermal and structural material nonlinearity and the thermal–structural response during a fire. A detailed numerical modeling analysis was performed with ABAQUS to achieve the proposed algorithm. The results of the proposed numerical methodology were validated against published experimental work. The experimental work includes a full-scale RC beam loaded with working loads and standard heating conditions to simulate real-life scenarios. The tested beam failed during the fire, and its fire resistance was recorded. The results demonstrated a good correlation with the experimental results in thermal and structural responses. Moreover, this paper presents the direct coupling technique (DCT) and the advantages of using DCT over the traditional sequential coupling technique (SCT)
- …
