21 research outputs found
234. Hydrodynamic Cell Delivery for Assessment of Tumor Growth and Drug Sensitivity in Different Organs and Microenvironment
HAZ, a novel peptide with broad-spectrum antibacterial activity
Objective: The growing microbial resistance to antibiotics is a global public concern, which creates serious needs for newer antimicrobial agents. Antimicrobial peptides (AMPs) are increasingly exploited in drug development as therapeutic candidates. Here, we aimed to design and characterize a novel peptide with broad spectrum antimicrobial activity. Methods: Hybridization and sequence modification approaches were used to design the novel peptide, named HAZ, aiming at optimizing the physicochemical parameters involved in antimicrobial activity. Peptide activities were assessed alone or combined with different selected antibiotics against various sensitive and drug-resistant bacterial strains. In addition, the hemolysis and the cytotoxic activities of HAZ peptide were evaluated on human red blood cells and epithelial adenocarcinoma cells (A549), respectively. Results: HAZ peptide was sequentially modified to result in favored physicochemical parameters (helicity 95.24 %, hydrophobic ratio 47 %, and net charge of 8 + ). Functional assessment of HAZ revealed significant antimicrobial activity, with MIC values of 15 – 20 µM against tested bacterial strains. It also exhibited biofilm eradication activity at slightly higher concentrations. HAZ-antibiotics combinations exhibited a synergistic action mode that led to dramatic decrease in the MIC values for both HAZ peptide and the antibiotic. Such efficacy was accompanied with minimal hemolytic toxicity on human erythrocytes. Importantly, HAZ displayed promising anticancer activity against human lung cancer cells. Conclusion: Rationally-designed antimicrobial peptides offer promising alternatives to the current antibiotics for management of infectious diseases. HAZ peptide is a broad-spectrum AMP, and a promising candidate for antimicrobial and anticancer drug development
Silibinin attenuates adipose tissue inflammation and reverses obesity and its complications in diet-induced obesity model in mice
Abstract
Background
Obesity is a multifactorial chronic disease that comprises several pathological events, such as adipose hypertrophy, fatty liver and insulin resistance. Inflammation is a key contributer to development of these events, and therefore, targeting inflammation is increasingly considered for management of obesity and its complications. The aim of the current study was to investigate therapeutic outcomes of anti-inflammatory activities of the natural compound Silibinin in reversing obesity and its complication in mice.
Methods
C57BL/6 male mice were fed high-fat diet for 8 weeks until development of obesity, and then injected with 50 mg/kg silibinin intraperitoneally twice per week, or vehicle for 8 weeks. Throughout the experiment, mice were continuously checked for body weight and food intake, and glucose tolerance test was performed toward the end of the experiment. Animals were sacrificed and serum and tissues were collected for biochemical, histological, and gene expression analysis to assess silibinin effects on adipose inflammation, fat accumulation, liver adipogenesis and glucose homeostasis.
Results
Silibinin treatment reversed adipose tissue inflammation and adipocyte hypertrophy, and blocked progression in weight gain and obesity development with no significant effects on rates of food intake. Silibinin also reversed fatty liver disease and restored glucose homeostasis in treated animals, and reversed hyperglycemia, hyperinsulinemia and hypertriglyceridemia.
Conclusion
In this study, we demonstrated that silibinin as an anti-inflammatory therapy is a potential alternative to manage obesity, as well as its related complications. Moreover, silibinin-based therapies could further evolve as a novel treatment to manage various inflammation-driven disorders.
</jats:sec
<p>Design and characterization of a new hybrid peptide from LL-37 and BMAP-27</p>
The Ultrashort Peptide OW: A New Antibiotic Adjuvant
Background:The over use of current antibiotics and low discovery rate of the new ones are leading to rapid development of multidrug-resistant pathogens worldwide. Antimicrobial peptides have shown promising results against multidrug-resistant bacteria.Objective:To investigate the antimicrobial activity of a new ultrashort hexapeptide (OW).Methods:The OW hexapeptide was designed and tested against different strains of bacteria with different levels of sensitivity. Bacterial susceptibility assays were performed according to the guidelines of the Clinical and Laboratory Institute (CLSI). The synergistic studies were then conducted using the Checkerboard assay. This was followed by checking the hemolytic effect of the hexapeptide against human blood cells and Human Embryonic Kidney cell line (HEK293). Finally, the antibiofilm activities of the hexapeptide were studied using the Biofilm Calgary method.Results:Synergistic assays showed that OW has synergistic effects with antibiotics of different mechanisms of action. It showed an outstanding synergism with Rifampicin against methicillin resistant Staphylococcus aureus; ΣFIC value was 0.37, and the MIC value of Rifampicin was decreased by 85%. OW peptide also displayed an excellent synergism with Ampicillin against multidrug-resistant Pseudomonas aeruginosa, with ΣFIC value of less than 0.38 and a reduction of more than 96% in the MIC value of Ampicillin.Conclusion:This study introduced a new ultrashort peptide (OW) with promising antimicrobial potential in the management of drug-resistant infectious diseases as a single agent or in combination with commonly used antibiotics. Further studies are needed to investigate the exact mechanism of action of these peptides.</jats:sec
