7 research outputs found
Comparative Analysis of the Frequency and Distribution of Stem and Progenitor Cells in the Adult Mouse Brain
cells (NSCs) and progenitor cells, but it cannot discriminate
between these two populations. Given two assays
have purported to overcome this shortfall, we performed
a comparative analysis of the distribution and frequency
of NSCs and progenitor cells detected in 400 m coronal
segments along the ventricular neuraxis of the adult
mouse brain using the neurosphere assay, the neural
colony forming cell assay (N-CFCA), and label-retaining
cell (LRC) approach. We observed a large variation in the
number of progenitor/stem cells detected in serial sections
along the neuraxis, with the number of neurosphereforming
cells detected in individual 400 m sections varying
from a minimum of eight to a maximum of 891
depending upon the rostral-caudal coordinate assayed.
Moreover, the greatest variability occurred in the rostral
portion of the lateral ventricles, thereby explaining the
large variation in neurosphere frequency previously reported.
Whereas the overall number of neurospheres
(3730 276) or colonies (4275 124) we detected along
the neuraxis did not differ significantly, LRC numbers
were significantly reduced (1186 188, 7 month chase) in
comparison to both total colonies and neurospheres.
Moreover, approximately two orders of magnitude fewer
NSC-derived colonies (50 10) were detected using the
N-CFCA as compared to LRCs. Given only 5% of the
LRCs are cycling (BrdU/Ki-67) or competent to divide
(BrdU/Mcm-2), and proliferate upon transfer to culture,
it is unclear whether this technique selectively detects
endogenous NSCs. Overall, caution should be taken
with the interpretation and employment of all these techniques
Purification of Immature Neuronal Cells from Neural Stem Cell Progeny
Large-scale proliferation and multi-lineage differentiation capabilities make neural stem cells (NSCs) a promising renewable source of cells for therapeutic applications. However, the practical application for neuronal cell replacement is limited by heterogeneity of NSC progeny, relatively low yield of neurons, predominance of astrocytes, poor survival of donor cells following transplantation and the potential for uncontrolled proliferation of precursor cells. To address these impediments, we have developed a method for the generation of highly enriched immature neurons from murine NSC progeny. Adaptation of the standard differentiation procedure in concert with flow cytometry selection, using scattered light and positive fluorescent light selection based on cell surface antibody binding, provided a near pure (97%) immature neuron population. Using the purified neurons, we screened a panel of growth factors and found that bone morphogenetic protein-4 (BMP-4) demonstrated a strong survival effect on the cells in vitro, and enhanced their functional maturity. This effect was maintained following transplantation into the adult mouse striatum where we observed a 2-fold increase in the survival of the implanted cells and a 3-fold increase in NeuN expression. Additionally, based on the neural-colony forming cell assay (N-CFCA), we noted a 64 fold reduction of the bona fide NSC frequency in neuronal cell population and that implanted donor cells showed no signs of excessive or uncontrolled proliferation. The ability to provide defined neural cell populations from renewable sources such as NSC may find application for cell replacement therapies in the central nervous system
Recommended from our members
