606 research outputs found
Governing the Labour Market: The Impossibility of Corporatist Reforms
This paper argues that a return to corporatist governance
structures is impossible in Pakistan. Section 1 outlines neo-classical
labour market regulation rationalities presented by Hayek, Wieser, and
Sen. Section 2 compares and contrasts Fordist and Post-Fordist modes of
labour market regulation. And Section 3 seeks to establish the
impossibility of institutionalising corporatist governance structures in
the labour markets of Pakistan. Neo-classical theory sees relations
between labour and the representatives of capital (‘managers’) as
relations created spontaneously by individuals in the pursuit of their
rational self-interest. The capitalist individual, be he labourer or
manager, defines ‘maximisation of utility’ as his ‘rational self
interest’, and order within the labour market requires a reconciliation
of individual (the labourer’s) and aggregate (the manager’s) utility
maximisation (with aggregate utility maximisation being represented by
shareholders value). Labour market order is thus impeded if
Biocontrol effects of chemical molecules derived from Beauveria bassiana against larvae of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)
In this study, we conducted tests on the isolation, identification, characterization, and extraction of chemical molecules from Beauveria bassiana against Tuta absoluta larvae. The enzyme responses of T. absoluta to the crude extract were examined 24 h after treatment, and the number of dead larvae was calculated 24 and 48 h after treatment. Molecular docking studies were conducted to assess the interaction of important molecules with the acetylcholinesterase enzyme. The larvicidal activity of crude chemicals from fungi was high 24 h after treatment, with LC50 and LC90 values of 25.937 and 33.559 μg/mL, respectively. For a period of 48 h, the LC50 and LC90 values were 52.254 and 60.450 μg/mL, respectively. The levels of acetylcholinesterase, α-carboxylesterase, and β-carboxylesterase enzymes were lower in the treatment group after 24 h compared to the control group. The GC-MS test revealed that the crude extract consisted mainly of 9,10-octadecadienoic acid, which was the primary compound. Docking results indicated that 9,10-octadecadienoic acid showed a strong interaction with acetylcholinesterase (AChE). Our findings suggest that the chemical molecule 9,10-octadecadienoic acid derived from the entomopathogenic fungus B. bassiana is more toxic to T. absoluta larvae. We plan to conduct studies to test its effectiveness in semi-field conditions and to evaluate its stability in field conditions. We believe that this 9,10-octadecadienoic acid molecule could be used to control T. absoluta larvae in the near future without causing environmental pollution
Impact of Gamma Irradiation and Kale Leaf Powder on Amino Acid and Fatty Acid Profiles of Chicken Meat under Different Storage Intervals
he present study was planned to determine the effect of kale leaf powder and gamma rays on variations in the pH, amino acid and fatty acid profiles of chicken meat at different storage intervals. Significant changes (p ≤ 0.05) in the pH, amino acid and fatty acid profiles of chicken meat following different treatments (KLP (1% and 2%) and gamma irradiation (3k Gy)) were reported at 0, 7 and 14 days of storage. The pH value of the chicken meat sample decreased with the addition of kale leaf powder, whereas the value increased following a gamma irradiation dose of 3 kGy and with the passage of time. During different storage intervals, the minimum reduction in the amino acid and fatty acid quantities in the chicken meat samples was reported after gamma irradiation treatment. However, with the addition of KLP, the amount of amino acids and fatty acids in the chicken meat samples increased. Conclusively, the pH was observed to be reduced in the meat following combined treatment (irradiation + KLP), whereas the 2% KLP treatment improved the amino acid and fatty acid profiles of the chicken samples.info:eu-repo/semantics/publishedVersio
Antimicrobial activity of Dracaena cinnabari resin from Soqotra Island on multi drug resistant human pathogens
Background: Few studies showed that Dracaena cinnabari resin, collected from Soqotra Island, Yemen, has antimicrobial activity. This study is the first to investigate antimicrobial activity of the resin on both antibiotic multi-resistant human pathogens and on poly-microbial culture.Material and Methods: Antimicrobial activity of ethanolic extract of Dracaena cinnabari resin from Soqotra Island on multidrug resistant Gram-positive and Gram-negative human ATCC standard pathogens and Ascosphaera apis, the causal organism of chalkbrood disease of honeybee was studied using the agar disc diffusion method. The minimal inhibitory concentration of extracts was carried out by the broth micro dilution method.Results: Ethanolic extract of Dracaena cinnabari resin showed a considerable antimicrobial activity against all the pathogens tested. The zone of inhibition were between 4.9-11.5 mm. The most sensitive microbe was Staphylococcus aureus and least sensitive was Aspergillus nidulans. The minimal inhibitory concentration of the extract against Escherichia. coli ATCC 10402, Klebsiella pneumonia ATCC 10031, and Staphylococcus aureus ATCC 29212 was 1.25 μg/mL (w/v) and for the other pathogens (Candida albicans ATCC 10231, Salmonella typhimurum ATCC 3311 and Pseudomonos aeruginosa ATCC 2785) was 2.5 μg/mL (w/v).Conclusion: Ethanolic extract of Dracaena cinnabari resin has a considerable antimicrobial activity against Gram-positive and Gram-negative human pathogens and fungi. This extract might possess a role in the management of microbial infections in human and honeybee disease.Key words: Antimicrobial Activity, Dracaena cinnabari, Human pathogens, Minimum Inhibitory Concentratio
Synergistic Effect of Azotobacter nigricans and Nitrogen Phosphorus Potassium Fertilizer on Agronomic and Yieldtraits of Maize (Zea mays L.)
Peer reviewe
Evaluation of Plant Growth-Promoting and Salinity Ameliorating Potential of Halophilic Bacteria Isolated From Saline Soil
Among the biotic and abiotic stress affecting the physical, chemical, and biological properties of soil, salinity is a major threat that leads to the desertification of cultivable land throughout the world. The existence of diverse and versatile microbial populations inhabiting the nutrient-rich soil and varied soil conditions affects the soil dynamism. A normal soil constitutes 600 million bacteria belonging to about 20,000 species, which is reduced to 1 million with 5,000-8,000 species in stress conditions. Plant growth-promoting rhizobacteria (PGPR) are in symbiotic association with the plant system, which helps in combating the abiotic stress and increases the overall productivity and yield. These microorganisms are actively associated with varied cellular communication processes through quorum sensing and secondary metabolites such as the production of Indole-3-acetic acid (IAA), exopolysaccharide (EPS) siderophore, ammonia, ACC deaminase, and solubilization of phosphate. The present study focused on the isolation, identification, and characterization of the microorganisms isolated from the seacoast of Dandi, Navsari. Twelve isolates exhibited PGP traits at a high salt concentration of 15-20%. AD9 isolate identified as Bacillus halotolerans showed a higher ammonia production (88 +/- 1.73 mu g/mL) and phosphate solubilization (86 +/- 3.06 mu g/mL) at 15% salt concentration, while AD32* (Bacillus sp. clone ADCNO) gave 42.67 +/- 1.20 mu g/mL IAA production at 20% salt concentration. AD2 (Streptomyces sp. clone ADCNB) and AD26 (Achromobacter sp. clone ADCNI) showed ACC deaminase activity of 0.61 +/- 0.12 and 0.60 +/- 0.04 nM alpha-ketobutyrate/mg protein/h, respectively. AD32 (Bacillus sp. clone ADCNL) gave a high siderophore activity of 65.40 +/- 1.65%. These isolates produced salinity ameliorating traits, total antioxidant activities, and antioxidant enzymes viz. superoxide dismutase (SOD), Glutathione oxidase (GSH), and catalase (CAT). Inoculation of the multipotent isolate that produced PGP traits and salinity ameliorating metabolites promoted the plant growth and development in rice under salinity stress conditions. These results in 50% more root length, 25.00% more plant dry weight, and 41% more tillers compared to its control.Peer reviewe
Development and optimization of fluoxetine orally disintegrating tablets using Box-Behnken design
Purpose: To develop and optimise some variables that influence fluoxetine orally disintegrating tablets (ODTs) formulation.Methods: Fluoxetine ODTs tablets were prepared using direct compression method. Three-factor, 3- level Box-Behnken design was used to optimize and develop fluoxetine ODT formulation. The design suggested 15 formulations of different lubricant concentration (X1), lubricant mixing time (X2), and compression force (X3) and then their effect was monitored on tablet weight (Y1), thickness (Y2), hardness (Y3), % friability (Y4), and disintegration time (Y5).Results: All powder blends showed acceptable flow properties, ranging from good to excellent. The disintegration time (Y5) was affected directly by lubricant concentration (X1). Lubricant mixing time (X2) had a direct effect on tablet thickness (Y2) and hardness (Y3), while compression force (X3) had a direct impact on tablet hardness (Y3), % friability (Y4) and disintegration time (Y5). Accordingly, Box-Behnken design suggested an optimized formula of 0.86 mg (X1), 15.3 min (X2), and 10.6 KN (X3). Finally, the prediction error percentage responses of Y1, Y2, Y3, Y4, and Y5 were 0.31, 0.52, 2.13, 3.92 and 3.75 %, respectively. Formula 4 and 8 achieved 90 % of drug release within the first 5 min of dissolution test.Conclusion: Fluoxetine ODT formulation has been developed and optimized successfully using Box- Behnken design and has also been manufactured efficiently using direct compression technique.Keywords: Box-Behnken experimental design, Orally disintegrating tablets, Direct compression, Antidepressant, Magnesium stearate, Mixing tim
Effect of Methyl Jasmonate and GA3 on Canola (Brassica napus L) Growth, Antioxidants Activity, and Nutrient Concentration Cultivated in Salt-Affected Soils
Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant\u27s growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That\u27s why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops
Pseudomonas aeruginosa inhibits quorum-sensing mechanisms of soft rot pathogen Lelliottia amnigena RCE to regulate its virulence factors and biofilm formation
The quorum-sensing (QS) cascade is responsible for the colonization and phenotypic behavior of the pathogenic organism and the regulation of diverse signal molecules. The disruption of the quorum-sensing system is an effective strategy to overcome the possibility of antibiotic resistance development in the pathogen. The quorum quenching does not kill the microbes. Instead, it hinders the expression of pathogenic traits. In the present experiment, Pseudomonas aeruginosa RKC1 was used to extract the metabolites responsible for quorum-sensing inhibition in soft rot pathogen Lelliottia amnigena RCE. During the initial screening, P. aeruginosa RKC1 was found to be most promising and inhibits violacein of Chromobacterium violaceum MTCC2656 pyocyanin, swarming-swimming motility of P. aeruginosa MTCC2297. The characterization of metabolites produced by the microbes which are responsible for quorum-sensing inhibition through GC-MS is very scarce in scientific literature. The ethyl acetate extract of P. aeruginosa RKC1 inhibits biofilm formation of L. amnigena RCE while inhibiting growth at higher concentrations. The GC-MS analysis suggested that Cyclic dipeptides (CDPs) such as Cyclo (L-prolyl-L-valine), Cyclo (Pro-Leu), and Cyclo(D-phenylalanyl-L-prolyl) were predominantly found in the ethyl acetate extract of the P. aeruginosa RKC1 (93.72%). This diketopiperazine (DKPs) exhibited quorum-sensing inhibition against the pathogen in liquid media during the active growth phase and regulated diverse metabolites of the pathogen. Moreover, the metabolites data from the clear zone around wells showed a higher concentration of DKSs (9.66%) compared to other metabolites. So far, very few reports indicate the role of DKPs or CDPs in inhibiting the quorum-sensing system in plant pathogenic bacteria. This is one such report that exploits metabolites of P. aeruginosa RKC1. The present investigation provided evidence to use quorum-sensing inhibitor metabolites, to suppress microbes' pathogenesis and thus develop an innovative strategy to overcome antibiotic resistance.Peer reviewe
Synergistic effects of honey and propolis toward drugmulti-resistant Staphylococcus Aureus, Escherichia coli and Candida Albicans isolates in single and polymicrobial cultures,”
- …
