127 research outputs found

    Mitochondrial Handling of Excess Ca\u3csup\u3e2+\u3c/sup\u3e is Substrate-dependent with Implications for Reactive Oxygen Species Generation

    Get PDF
    The mitochondrial electron transport chain is the major source of reactive oxygen species (ROS) during cardiac ischemia. Several mechanisms modulate ROS production; one is mitochondrial Ca2+ uptake. Here we sought to elucidate the effects of extramitochondrial Ca2+ (e[Ca2+]) on ROS production (measured as H2O2 release) from complexes I and III. Mitochondria isolated from guinea pig hearts were preincubated with increasing concentrations of CaCl2 and then energized with the complex I substrate Na+ pyruvate or the complex II substrate Na+ succinate. Mitochondrial H2O2 release rates were assessed after giving either rotenone or antimycin A to inhibit complex I or III, respectively. After pyruvate, mitochondria maintained a fully polarized membrane potential (ΔΨ; assessed using rhodamine 123) and were able to generate NADH (assessed using autofluorescence) even with excess e[Ca2+] (assessed using CaGreen-5N), whereas they remained partially depolarized and did not generate NADH after succinate. This partial ΔΨ depolarization with succinate was accompanied by a large release in H2O2 (assessed using Amplex red/horseradish peroxidase) with later addition of antimycin A. In the presence of excess e[Ca2+], adding cyclosporin A to inhibit mitochondrial permeability transition pore opening restored ΔΨ and significantly decreased antimycin A-induced H2O2 release. Succinate accumulates during ischemia to become the major substrate utilized by cardiac mitochondria. The inability of mitochondria to maintain a fully polarized ΔΨ under excess e[Ca2+] when succinate, but not pyruvate, is the substrate may indicate a permeabilization of the mitochondrial membrane, which enhances H2O2 emission from complex III during ischemia

    Enhanced Na\u3csup\u3e+\u3c/sup\u3e/H\u3csup\u3e+\u3c/sup\u3e Exchange During Ischemia and Reperfusion Impairs Mitochondrial Bioenergetics and Myocardial Function

    Get PDF
    Inhibition of Na+/H+ exchange (NHE) during ischemia reduces cardiac injury due to reduced reverse mode Na+/Ca2+ exchange. We hypothesized that activating NHE-1 at buffer pH 8 during ischemia increases mitochondrial oxidation, Ca2+ overload, and reactive O2 species (ROS) levels and worsens functional recovery in isolated hearts and that NHE inhibition reverses these effects. Guinea pig hearts were perfused with buffer at pH 7.4 (control) or pH 8 +/- NHE inhibitor eniporide for 10 minutes before and for 10 minutes after 35- minute ischemia and then for 110 minutes with pH 7.4 buffer alone. Mitochondrial NADH and FAD, [Ca2+], and superoxide were measured by spectrophotofluorometry. NADH and FAD were more oxidized, and cardiac function was worse throughout reperfusion after pH 8 versus pH 7.4, Ca2+ overload was greater at 10-minute reperfusion, and superoxide generation was higher at 30-minute reperfusion. The pH 7.4 and eniporide groups exhibited similar mitochondrial function, and cardiac performance was most improved after pH 7.4+eniporide. Cardiac function on reperfusion after pH 8+eniporide was better than after pH 8. Percent infarction was largest after pH 8 and smallest after pH 7.4+eniporide. Activation of NHE with pH 8 buffer and the subsequent decline in redox state with greater ROS and Ca2+ loading underlie the poor functional recovery after ischemia and reperfusion

    Differential Effects of Buffer pH On Ca\u3csup\u3e2+\u3c/sup\u3e-Induced ROS Emission with Inhibited Mitochondrial Complexes I and III

    Get PDF
    Excessive mitochondrial reactive oxygen species (ROS) emission is a critical component in the etiology of ischemic injury. Complex I and complex III of the electron transport chain are considered the primary sources of ROS emission during cardiac ischemia and reperfusion (IR) injury. Several factors modulate ischemic ROS emission, such as an increase in extra-matrix Ca2+, a decrease in extra-matrix pH, and a change in substrate utilization. Here we examined the combined effects of these factors on ROS emission from respiratory complexes I and III under conditions of simulated IR injury. Guinea pig heart mitochondria were suspended in experimental buffer at a given pH and incubated with or without CaCl2. Mitochondria were then treated with either pyruvate, a complex I substrate, followed by rotenone, a complex I inhibitor, or succinate, a complex II substrate, followed by antimycin A, a complex III inhibitor. H2O2 release rate and matrix volume were compared with and without adding CaCl2 and at pH 7.15, 6.9, or 6.5 with pyruvate + rotenone or succinate + antimycin A to simulate conditions that may occur during in vivo cardiac IR injury. We found a large increase in H2O2 release with high [CaCl2] and pyruvate + rotenone at pH 6.9, but not at pHs 7.15 or 6.5. Large increases in H2O2 release rate also occurred at each pH with high [CaCl2] and succinate + antimycin A, with the highest levels observed at pH 7.15. The increases in H2O2 release were associated with significant mitochondrial swelling, and both H2O2 release and swelling were abolished by cyclosporine A, a desensitizer of the mitochondrial permeability transition pore (mPTP). These results indicate that ROS production by complex I and by complex III is differently affected by buffer pH and Ca2+ loading with mPTP opening. The study suggests that changes in the levels of cytosolic Ca2+ and pH during IR alter the relative amounts of ROS produced at mitochondrial respiratory complex I and complex III

    Identity and Function of a Cardiac Mitochondrial Small Conductance Ca2+-Activated K+ Channel Splice Variant

    Get PDF
    We provide evidence for location and function of a small conductance, Ca2+-activated K+ (SKCa) channel isoform 3 (SK3) in mitochondria (m) of guinea pig, rat and human ventricular myocytes. SKCa agonists protected isolated hearts and mitochondria against ischemia/reperfusion (IR) injury; SKCa antagonists worsened IR injury. Intravenous infusion of a SKCa channel agonist/antagonist, respectively, in intact rats was effective in reducing/enhancing regional infarct size induced by coronary artery occlusion. Localization of SK3 in mitochondria was evidenced by Western blot of inner mitochondrial membrane, immunocytochemical staining of cardiomyocytes, and immunogold labeling of isolated mitochondria. We identified a SK3 splice variant in guinea pig (SK3.1, aka SK3a) and human ventricular cells (SK3.2) by amplifying mRNA, and show mitochondrial expression in mouse atrial tumor cells (HL-1) by transfection with full length and truncated SK3.1 protein. We found that the N-terminus is not required for mitochondrial trafficking but the C-terminus beyond the Ca2+ calmodulin binding domain is required for Ca2+ sensing to induce mK+ influx and/or promote mitochondrial localization. In isolated guinea pig mitochondria and in SK3 overexpressed HL-1 cells, mK+ influx was driven by adding CaCl2. Moreover, there was a greater fall in membrane potential (ΔΨm), and enhanced cell death with simulated cell injury after silencing SK3.1 with siRNA. Although SKCa channel opening protects the heart and mitochondria against IR injury, the mechanism for favorable bioenergetics effects resulting from SKCa channel opening remains unclear. SKCa channels could play an essential role in restraining cardiac mitochondria from inducing oxidative stress-induced injury resulting from mCa2+ overload

    Adding ROS Scavengers to Cold K\u3csup\u3e+\u3c/sup\u3e Cardioplegia Reduces Superoxide Emission During 2 h Global Cold Cardiac Ischemia

    Get PDF
    We reported that the combination of reactive oxygen species (ROS) quenchers Mn(III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), catalase, and glutathione (MCG) given before 2 hours cold ischemia better protected cardiac mitochondria against cold ischemia and warm reperfusion (IR)-induced damage than MnTBAP alone. Here, we hypothesize that high K+ cardioplegia (CP) plus MCG would provide added protection of mitochondrial bioenergetics and cardiac function against IR injury. Using fluorescence spectrophotometry, we monitored redox balance, ie reduced nicotinamide adenine dinucleotide and flavin adenine dinucleotide (NADH/FAD), superoxide (O2 •−), and mitochondrial Ca2+ (m[Ca2+]) in the left ventricular free wall. Guinea pig isolated hearts were perfused with either Krebs Ringer’s (KR) solution, CP, or CP + MCG, before and during 27°C perfusion followed immediately by 2 hours of global ischemia at 27°C. Drugs were washed out with KR at the onset of 2 hours 37°C reperfusion. After 120 minutes warm reperfusion, myocardial infarction was lowest in the CP + MCG group and highest in the KR group. Developed left ventricular pressure recovery was similar in CP and CP + MCG and was better than in the KR group. O2 •−, m[Ca2+], and NADH/FAD were significantly different between the treatment and KR groups. O2 •− was lower in CP + MCG than in the CP group. This study suggests that CP and ROS quenchers act in parallel to improve mitochondrial function and to provide protection against IR injury at 27°C

    Ranolazine Reduces Ca\u3csup\u3e2+\u3c/sup\u3e Overload and Oxidative Stress and Improves Mitochondrial Integrity to Protect Against Ischemia Reperfusion Injury in Isolated Hearts

    Get PDF
    Ranolazine is a clinically approved drug for treating cardiac ventricular dysrhythmias and angina. Its mechanism(s) of protection is not clearly understood but evidence points to blocking the late Na+ current that arises during ischemia, blocking mitochondrial complex I activity, or modulating mitochondrial metabolism. Here we tested the effect of ranolazine treatment before ischemia at the mitochondrial level in intact isolated hearts and in mitochondria isolated from hearts at different times of reperfusion. Left ventricular (LV) pressure (LVP), coronary flow (CF), and O2 metabolism were measured in guinea pig isolated hearts perfused with Krebs-Ringer’s solution; mitochondrial (m) O2 •−, Ca2+, NADH/FAD (redox state), and cytosolic (c) Ca2+ were assessed on-line in the LV free wall by fluorescence spectrophotometry. Ranolazine (5 μM), infused for 1min just before 30 min of global ischemia, itself did not change O2 •−, cCa2+, mCa2+ or redox state. During late ischemia and reperfusion (IR) O2 •− emission and m[Ca2+] increased less in the ranolazine group vs. the control group. Ranolazine decreased c [Ca2+] only during ischemia while NADH and FAD were not different during IR in the ranolazine vs. control groups. Throughout reperfusion LVP and CF were higher, and ventricular fibrillation was less frequent. Infarct size was smaller in the ranolazine group than the control group. Mitochondria isolated from ranolazinetreated hearts had mild resistance to permeability transition pore (mPTP) opening and less cytochrome c release than control hearts. Ranolazine may provide functional protection of the heart during IR injury by reducing cCa2+ and mCa2+ loading secondary to its effect to block the late Na+ current. Subsequently it indirectly reduces O2 •− emission, preserves bioenergetics, delays mPTP opening, and restricts loss of cytochrome c, thereby reducing necrosis and apoptosis

    Modulation of Mitochondrial Bioenergetics in the Isolated Guinea Pig Beating Heart by Potassium and Lidocaine Cardioplegia: Implications for Cardioprotection

    Get PDF
    Mitochondria are damaged by cardiac ischemia/reperfusion (I/R) injury but can contribute to cardioprotection. We tested if hyperkalemic cardioplegia (CP) and lidocaine (LID) differently modulate mitochondrial (m) bioenergetics and protect hearts against I/R injury. Guinea pig hearts (n = 71) were perfused with Krebs Ringer\u27s solution before perfusion for 1 minute just before ischemia with either CP (16 mM K+) or LID (1 mM) or Krebs Ringer\u27s (control, 4 mM K+). The 1-minute perfusion period assured treatment during ischemia but not on reperfusion. Cardiac function, NADH, FAD, m[Ca2+], and superoxide (reactive oxygen species) were assessed at baseline, during the 1-minute perfusion, and continuously during I/R. During the brief perfusion before ischemia, CP and LID decreased reactive oxygen species and increased NADH without changing m[Ca2+]. Additionally, CP decreased FAD. During ischemia, NADH was higher and reactive oxygen species was lower after CP and LID, whereas m[Ca2+] was lower only after LID. On reperfusion, NADH and FAD were more normalized, and m[Ca2+] and reactive oxygen species remained lower after CP and LID. Better functional recovery and smaller infarct size after CP and LID were accompanied by better mitochondrial function. These results suggest that mitochondria may be implicated, directly or indirectly, in protection by CP and LID against I/R injury

    Comparison of Cumulative Planimetry versus Manual Dissection to Assess Experimental Infarct Size in Isolated Hearts

    Get PDF
    Introduction Infarct size (IS) is an important variable to estimate cardiac ischemia/reperfusion injury in animal models. Triphenyltetrazolium chloride (TTC) stains viable cells red while leaving infarcted cells unstained. To quantify IS, infarcted and non-infarcted tissue is often manually dissected and weighed (IS-DW). An alternative is to measure infarcted areas by cumulative planimetry (IS-CP). Methods We prospectively compared these two methods in 141 Langendorff-prepared guinea pig hearts (1.44 ± 0.02 g) that were part of different studies on mechanisms of cardioprotection. Hearts were perfused with Krebs–Ringer\u27s and subjected to 30 min global ischemia after various cardioprotective treatments. Two hours after reperfusion hearts were cut into 6–7 transverse sections (3 mm) and stained for 5 min in 1% TTC and 0.1 M KH2PO4 buffer (pH 7.4, 38 °C). Each slice was first scanned and its infarcted area measured with Image 1.62 software (NIH). Infarctions in individual slices of each heart were averaged (IS-CP) on the basis of their weight. After scanning, IS-DW was determined by careful manual dissection of infarcted from non-infarcted tissue and measuring their respective total weight. Results We found limited tissue permeation of TTC in relation to the slice thickness leaving tissue in the center unstained, as well as significant cross-contamination of stained vs. unstained tissue after manual dissection. IS-CP and IS-DW ranged from 6.0 to 73.1% and 19.4 to 70.5%, respectively, and correlated as follows: IS-DW = (27.6 ± 1.4) + (0.518 ± 0.038) • IS-CP; r = 0.75 (Pearson), p \u3c 0.001. In addition, IS-CP correlated better with return of function after reperfusion like developed left ventricular pressure, contractility and relaxation, and myocardial oxygen consumption. Discussion Despite a good correlation between both methods, limited tissue permeation by TTC diffusion and limited precision in the ability to manually dissect stained from unstained tissue leads to an overestimation of infarct size by dissection and weighing compared to cumulative planimetry

    Stretch‐Induced Increase in Cardiac Contractility Is Independent of Myocyte Ca\u3csup\u3e2+\u3c/sup\u3e While Block of Stretch Channels by Streptomycin Improves Contractility After Ischemic Stunning

    Get PDF
    Stretching the cardiac left ventricle (LV) enhances contractility but its effect on myoplasmic [Ca2+] is controversial. We measured LV pressure (LVP) and [Ca2+] as a function of intra-LV stretch in guinea pig intact hearts before and after 15 min global stunning ± perfusion with streptomycin (STM), a stretch activated channel blocker. LV wall [Ca2+] was measured by indo-1 fluorescence and LVP by a saline-filled latex balloon inflated in 50 μL steps to stretch the LV. We implemented a mathematical model to interpret crossbridge dynamics and myofilament Ca2+ responsiveness from the instantaneous relationship between [Ca2+] and LVP ± stretching. We found that: (1) stretch enhanced LVP but not [Ca2+] before and after stunning in either control (CON) and STM groups, (2) after stunning [Ca2+] increased in both groups although higher in STM versus CON (56% vs. 39%), (3) STM-enhanced LVP after stunning compared to CON (98% vs. 76% of prestunning values), and (4) stretch-induced effects on LVP were independent of [Ca2+] before or after stunning in both groups. Mathematical modeling suggested: (1) cooperativity in cross-bridge kinetics and myofilament Ca2+ handling is reduced after stunning in the unstretched heart, (2) stunning results in depressed myofilament Ca2+ sensitivity in the presence of attached cross-bridges regardless of stretch, and (3) the initial mechanism responsible for increased contractility during stretch may be enhanced formation of cross-bridges. Thus stretch-induced enhancement of contractility is not due to increased [Ca2+], whereas enhanced contractility after stunning in STM versus CON hearts results from improved Ca2+ handling and/or enhanced actinomyosin cross-bridge cycling

    Protection Against Cardiac Injury by Small Ca\u3csup\u3e2 +\u3c/sup\u3e-Sensitive K\u3csup\u3e+\u3c/sup\u3e Channels Identified in Guinea Pig Cardiac Inner Mitochondrial Membrane

    Get PDF
    We tested if small conductance, Ca2 +‐sensitive K+ channels (SKCa) precondition hearts against ischemia reperfusion (IR) injury by improving mitochondrial (m) bioenergetics, if O2‐derived free radicals are required to initiate protection via SKCa channels, and, importantly, if SKCa channels are present in cardiac cell inner mitochondrial membrane (IMM). NADH and FAD, superoxide (O2−), and m[Ca2 +] were measured in guinea pig isolated hearts by fluorescence spectrophotometry. SKCa and IKCa channel opener DCEBIO (DCEB) was given for 10 min and ended 20 min before IR. Either TBAP, a dismutator of O2−, NS8593, an antagonist of SKCa isoforms, or other KCa and KATP channel antagonists, were given before DCEB and before ischemia. DCEB treatment resulted in a 2-fold increase in LV pressure on reperfusion and a 2.5 fold decrease in infarct size vs. non-treated hearts associated with reduced O2− and m[Ca2 +], and more normalized NADH and FAD during IR. Only NS8593 and TBAP antagonized protection by DCEB. Localization of SKCa channels to mitochondria and IMM was evidenced by a) identification of purified mSKCa protein by Western blotting, immuno-histochemical staining, confocal microscopy, and immuno-gold electron microscopy, b) 2-D gel electrophoresis and mass spectroscopy of IMM protein, c) [Ca2 +]‐dependence of mSKCa channels in planar lipid bilayers, and d) matrix K+ influx induced by DCEB and blocked by SKCa antagonist UCL1684. This study shows that 1) SKCa channels are located and functional in IMM, 2) mSKCa channel opening by DCEB leads to protection that is O2−dependent, and 3) protection by DCEB is evident beginning during ischemia
    corecore