29 research outputs found
An Energy-Efficient Protocol Using an Objective Function & Random Search with Jumps for WSN
Wireless Sensor Networks (WSNs) have hardware and software limitations and are deployed in hostile environments. The problem of energy consumption in WSNs has become a very important axis of research. To obtain good performance in terms of the network lifetime, several routing protocols have been proposed in the literature. Hierarchical routing is considered to be the most favorable approach in terms of energy efficiency. It is based on the concept parent-child hierarchy where the child nodes forward their messages to their parent, and then the parent node forwards them, directly or via other parent nodes, to the base station (sink). In this paper, we present a new Energy-Efficient clustering protocol for WSNs using an Objective Function and Random Search with Jumps (EEOFRSJ) in order to reduce sensor energy consumption. First, the objective function is used to find an optimal cluster formation taking into account the ratio of the mean Euclidean distance of the nodes to their associated cluster heads (CH) and their residual energy. Then, we find the best path to transmit data from the CHs nodes to the base station (BS) using a random search with jumps. We simulated our proposed approach compared with the Energy-Efficient in WSNs using Fuzzy C-Means clustering (EEFCM) protocol using Matlab Simulink. Simulation results have shown that our proposed protocol excels regarding energy consumption, resulting in network lifetime extension
Approach to minimizing consumption of energy in wireless sensor networks
The Wireless Sensor Networks (WSN) technology has benefited from a central position in the research space of future emerging networks by its diversity of applications fields and also by its optimization techniques of its various constraints, more essentially, the minimization of nodal energy consumption to increase the global network lifetime. To answer this saving energy problem, several solutions have been proposed at the protocol stack level of the WSN. In this paper, after presenting a state of the art of this technology and its conservation energy techniques at the protocol stack level, we were interested in the network layer to propose a routing solution based on a localization aspect that allows the creation of a virtual grid on the coverage area and introduces it to the two most well-known energy efficiency hierarchical routing protocols, LEACH and PEGASIS. This allowed us to minimize the energy consumption and to select the clusters heads in a deterministic way unlike LEACH which is done in a probabilistic way and also to minimize the latency in PEGASIS, by decomposing its chain into several independent chains. The simulation results, under "MATLABR2015b", have shown the efficiency of our approach in terms of overall residual energy and network lifetime
Vibration analysis using the theory of exponential shear deformation for laminated plates
In this research, the free vibration response of laminated composite plates is studied using a refined exponential shear strain theory. The most interesting feature of this theory is that it allows exponential distributions of transverse shear strains, and verifies zero-shear boundary conditions on the plate surfaces without the use of shear correction factors. Some stiffness constants are written as a series. The number of independent unknowns in the present theory is four, compared with five in other shear deformation theories. The equations of motion are obtained from Hamilton's principle and Navier's method is used to determine the exact solution for antisymmetric cross-laminated plates. The numerical results found in the present analysis for free vibration are presented and compared with those available in the literature. The proposed theory is not only accurate, but also effective in predicting the fundamental frequencies of laminated composite plates
Development and Performance Enhancement of MEMS Helix Antenna for THz Applications using 3D HFSS-based Efficient Electromagnetic Optimization
Interest of Micro-Electromechanical System (MEMS) antennas in Terahertz (THz) applications has rapidly expanded in recent years due to the advent of accurate Computer Aided Design (CAD) tools. The very special needs of newly proposed MEMS antennas, especially with a wide bandwidth range, require advanced optimization procedures of enhancing already established designs. This paper provides a compact design of a wideband MEMS helix antenna optimized using tree-dimensional High Frequency Structure Simulator (3D-HFSS) based on Quasi-Newton (Q-N) and Sequential Non Linear Programming (SNLP) techniques to modify the antenna structure with a high accuracy for the selective band of frequencies by training the samples and minimizing the error from Finite Element Method- (FEM) based simulation tool. The helix antenna is presented using MEMS technology and shows high performance demonstrated by very low return losses of less than -20 to -65 dB for a wide range of frequencies from 2.5 to 5 THz. High antenna geometry precision and efficient performance are finally achieved by rectifying and synthesizing various tunable parameters embedded in silicon substrate including both helix form and feeding line parameters
Endocardite infectieuse mitro-aortique compliquée de perforation valvulaire, d’anévrisme mycotique et d’infarctus spleno-rénal
L'endocardite infectieuse est considérée comme une pathologie potentiellement grave malgré tous les progrès en diagnostic et traitement. Les valves du cœur gauche sont plus touchées et les évènements emboliques, les anévrismes mycotiques, les abcès ainsi que les perforations des valves en sont des complications redoutables. Nous rapportons le cas d'une endocardite ayant atteint les valves aortique et mitrale et qui s'est compliquée d'infarctus splénique et rénale, d'anévrisme mycotique cérébral et d'une perforation de la grande valve mitrale. L'intérêt du cas est souligné suite à la bonne évolution au décours d'un traitement médico-chirurgical en dépit de la multitude des complications
SIRNA-Directed In Vivo Silencing of Androgen Receptor Inhibits the Growth of Castration-Resistant Prostate Carcinomas
BACKGROUND: Prostate carcinomas are initially dependent on androgens, and castration or androgen antagonists inhibit their growth. After some time though, tumors become resistant and recur with a poor prognosis. The majority of resistant tumors still expresses a functional androgen receptor (AR), frequently amplified or mutated. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that AR is not only expressed, but is still a key therapeutic target in advanced carcinomas, we injected siRNA targeting AR into mice bearing exponentially growing castration-resistant tumors. Quantification of siRNA into tumors and mouse tissues demonstrated their efficient uptake. This uptake silenced AR in the prostate, testes and tumors. AR silencing in tumors strongly inhibited their growth, and importantly, also markedly repressed the VEGF production and angiogenesis. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that carcinomas resistant to hormonal manipulations still depend on the expression of the androgen receptor for their development in vivo. The siRNA-directed silencing of AR, which allows targeting overexpressed as well as mutated isoforms, triggers a strong antitumoral and antiangiogenic effect. siRNA-directed silencing of this key gene in advanced and resistant prostate tumors opens promising new therapeutic perspectives and tools
