52 research outputs found

    Prolonged, Low-Dose Anti-Thymocyte Globulin, Combined with CTLA4-Ig, Promotes Engraftment in a Stringent Transplant Model

    Get PDF
    Background: Despite significant nephrotoxicity, calcineurin inhibitors (CNIs) remain the cornerstone of immunosuppression in solid organ transplantation. We, along with others, have reported tolerogenic properties of anti-thymocyte globulin (ATG, Thymoglobulin®), evinced by its ability both to spare Tregs from depletion in vivo and, when administered at low, non-depleting doses, to expand Tregs ex vivo. Clinical trials investigating B7/CD28 blockade (LEA29Y, Belatacept) in kidney transplant recipients have proven that the replacement of toxic CNI use is feasible in selected populations. Methods: Rabbit polyclonal anti-murine thymocyte globulin (mATG) was administered as induction and/or prolonged, low-dose therapy, in combination with CTLA4-Ig, in a stringent, fully MHC-mismatched murine skin transplant model to assess graft survival and mechanisms of action. Results: Prolonged, low-dose mATG, combined with CTLA4-Ig, effectively promotes engraftment in a stringent transplant model. Our data demonstrate that mATG achieves graft acceptance primarily by promoting Tregs, while CTLA4-Ig enhances mATG function by limiting activation of the effector T cell pool in the early stages of treatment, and by inhibiting production of anti-rabbit antibodies in the maintenance phase, thereby promoting regulation of alloreactivity. Conclusion: These data provide the rationale for development of novel, CNI-free clinical protocols in human transplant recipients

    Prospective observational study to validate a next-generation sequencing blood RNA signature to predict early kidney transplant rejection

    Get PDF
    Early rejection; Kidney transplantRechazo precoz; Trasplante renalRebuig precoç; Trasplantament renalThe objective of this study was to validate the performance of Tutivia, a peripheral blood gene expression signature, in predicting early acute rejection (AR) post–kidney transplant. Recipients of living or deceased donor kidney transplants were enrolled in a nonrandomized, prospective, global, and observational study (NCT04727788). The main outcome was validation of the area under the curve (AUC) of Tutivia vs serum creatinine at biopsy alone, or Tutivia + serum creatinine at biopsy. Of the 151 kidney transplant recipients, the mean cohort age was 53 years old, and 64% were male. There were 71% (107/151) surveillance/protocol biopsies and 29% (44/151) for-cause biopsies, with a 31% (47/151) overall rejection rate. Tutivia (AUC 0.69 [95% CI: 0.59-0.77]) and AUC of Tutivia + creatinine at biopsy (0.68 [95% CI: 0.59-0.77]) were greater than the AUC of creatinine at biopsy alone (0.51.4 [95% CI: 0.43-0.60]). Applying a model cut-off of 50 (scale 0-100) generated a high- and low-risk category for AR with a negative predictive value of 0.79 (95% CI: 0.71-0.86), a positive predictive value of 0.60 (95% CI: 0.45-0.74), and an odds ratio of 5.74 (95% CI: 2.63-12.54). Tutivia represents a validated noninvasive approach for clinicians to accurately predict early AR, beyond the current standard of care.This study was sponsored by Verici Dx

    A Critical Role for the Programmed Death Ligand 1 in Fetomaternal Tolerance

    Get PDF
    Fetal survival during gestation implies that tolerance mechanisms suppress the maternal immune response to paternally inherited alloantigens. Here we show that the inhibitory T cell costimulatory molecule, programmed death ligand 1 (PDL1), has an important role in conferring fetomaternal tolerance in an allogeneic pregnancy model. Blockade of PDL1 signaling during murine pregnancy resulted in increased rejection rates of allogeneic concepti but not syngeneic concepti. Fetal rejection was T cel

    Early calcineurin-inhibitor to belatacept conversion in steroid-free kidney transplant recipients

    Get PDF
    BackgroundBelatacept (Bela) was developed to reduce nephrotoxicity and cardiovascular risk that are associated with the chronic use of Calcineurin inhibitors (CNIs) in kidney transplant recipients. The use of Bela with early steroid withdrawal (ESW) and simultaneous CNI avoidance has not been formally evaluated. MethodsAt 3 months post-transplant, stable kidney transplant recipients with ESW on Tacrolimus (Tac) + mycophenolate (MPA) were randomized 1:1:1 to: 1) Bela+MPA, 2) Bela+low-dose Tac (trough goal <5 ng/mL), or 3) continue Tac+MPA. All patients underwent surveillance graft biopsies at enrollment and then at 12, and 24 months post-transplant. Twenty-seven recipients were included; 9 underwent conversion to Bela+MPA, 8 to Bela+low-dose Tac and 10 continued Tac+MPA. Serial blood samples were collected for immune phenotyping and gene expression analyses. ResultsThe Bela+MPA arm was closed early due to high rate of biopsy proven acute rejection (BPAR). The incidence of BPAR was 4/9 in Bela+MPA, 0/8 in Bela+low dose Tac and 2/10 in Tac+MPA, P= 0.087. The Bela+low-dose Tac regimen was associated with +8.8 mL/min/1.73 m(2) increase in eGFR compared to -0.38 mL/min/1.73 m(2) in Tac+MPA, P= 0.243. One graft loss occurred in the Bela+MPA group. Immunophenotyping of peripheral blood monocyte count (PBMC) showed that CD28(+)CD4(+) and CD28(+)CD8(+) T cells were higher in Bela+MPA patients with acute rejection compared to patients without rejection, although the difference did not reach statistical significance. ConclusionsOur data indicate that, in steroid free regimens, low-dose Tac maintenance is needed to prevent rejection when patients are converted to Bela, at least when the maneuver is done early after transplant

    Critical Role of the Programmed Death-1 (PD-1) Pathway in Regulation of Experimental Autoimmune Encephalomyelitis

    Get PDF
    Experimental autoimmune encephalomyelitis (EAE) is mediated by autoantigen-specific T cells dependent on critical costimulatory signals for their full activation and regulation. We report that the programmed death-1 (PD-1) costimulatory pathway plays a critical role in regulating peripheral tolerance in murine EAE and appears to be a major contributor to the resistance of disease induction in CD28-deficient mice. After immunization with myelin oligodendrocyte glycoprotein (MOG) there was a progressive increase in expression of PD-1 and its ligand PD-L1 but not PD-L2 within the central nervous system (CNS) of mice with EAE, peaking after 3 wk. In both wild-type (WT) and CD28-deficient mice, PD-1 blockade resulted in accelerated and more severe disease with increased CNS lymphocyte infiltration. Worsening of disease after PD-1 blockade was associated with a heightened autoimmune response to MOG, manifested by increased frequency of interferon γ–producing T cells, increased delayed-type hypersensitivity responses, and higher serum levels of anti-MOG antibody. In vivo blockade of PD-1 resulted in increased antigen-specific T cell expansion, activation, and cytokine production. Interestingly, PD-L2 but not PD-L1 blockade in WT animals also resulted in disease augmentation. Our data are the first demonstration that the PD-1 pathway plays a critical role in regulating EAE

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    publishedVersio

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. Methods: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. Findings: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. Interpretation: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed. Funding: Bill & Melinda Gates Foundation
    corecore