506 research outputs found
A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis
Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease
Recommended from our members
Altered Chromatin Occupancy of Master Regulators Underlies Evolutionary Divergence in the Transcriptional Landscape of Erythroid Differentiation
Erythropoiesis is one of the best understood examples of cellular differentiation. Morphologically, erythroid differentiation proceeds in a nearly identical fashion between humans and mice, but recent evidence has shown that networks of gene expression governing this process are divergent between species. We undertook a systematic comparative analysis of six histone modifications and four transcriptional master regulators in primary proerythroblasts and erythroid cell lines to better understand the underlying basis of these transcriptional differences. Our analyses suggest that while chromatin structure across orthologous promoters is strongly conserved, subtle differences are associated with transcriptional divergence between species. Many transcription factor (TF) occupancy sites were poorly conserved across species (∼25% for GATA1, TAL1, and NFE2) but were more conserved between proerythroblasts and cell lines derived from the same species. We found that certain cis-regulatory modules co-occupied by GATA1, TAL1, and KLF1 are under strict evolutionary constraint and localize to genes necessary for erythroid cell identity. More generally, we show that conserved TF occupancy sites are indicative of active regulatory regions and strong gene expression that is sustained during maturation. Our results suggest that evolutionary turnover of TF binding sites associates with changes in the underlying chromatin structure, driving transcriptional divergence. We provide examples of how this framework can be applied to understand epigenomic variation in specific regulatory regions, such as the β-globin gene locus. Our findings have important implications for understanding epigenomic changes that mediate variation in cellular differentiation across species, while also providing a valuable resource for studies of hematopoiesis
An update on the pathogenesis and diagnosis of Diamond–Blackfan anemia [version 1; referees: 2 approved]
Diamond–Blackfan anemia (DBA) is a rare congenital hypoplastic anemia characterized by a block in erythropoiesis at the progenitor stage, although the exact stage at which this occurs remains to be fully defined. DBA presents primarily during infancy with macrocytic anemia and reticulocytopenia with 50% of cases associated with a variety of congenital malformations. DBA is most frequently due to a sporadic mutation (55%) in genes encoding several different ribosomal proteins, although there are many cases where there is a family history of the disease with varying phenotypes. The erythroid tropism of the disease is still a matter of debate for a disease related to a defect in global ribosome biogenesis. Assessment of biological features in conjunction with genetic testing has increased the accuracy of the diagnosis of DBA. However, in certain cases, it continues to be difficult to firmly establish a diagnosis. This review will focus on the diagnosis of DBA along with a description of new advances in our understanding of the pathophysiology and treatment recommendations for DBA
Characterization, regulation, and targeting of erythroid progenitors in normal and disordered human erythropoiesis
Membrane association of peroxiredoxin-2 in red cells is mediated by n-terminal cytoplasmic domain of band 3
Band 3(B3),the anion transporter, is an integral membrane protein that plays a key structural role by anchor in the plasmamembrane to the spectrin-based membrane skeleton in the red cell. In addition, it also plays a critical role in the assembly of glycolytic enzymes to regulate red cell metabolism.
However, its ability to recruit proteins that can prevent membrane oxidation has not been previously explored. In this study, using a variety of experimental approaches including cross-linking studies, fluorescence and dichroic measurements,surface plasmon resonance analysis, and proteolytic digestion assays, we document that the antioxidant protein peroxiredoxin-2(PRDX2), the third most abundant cytoplasmic protein in RBCs, interacts with the cytoplasmic domain of B3. The surface electrostatic
potential analysis and stoichiometry measurements revealed that the N-terminal peptide of B3 is involved in the interaction. PRDX2 underwent a conformational change upon its binding to B3 without
losing its peroxidase activity. Hemichrome formation induced by phenylhydrazine of RBCs prevented membrane association of PRDX2, implying overlapping binding sites. Documentation of the absence of binding of PRDX2 to B3 Neapolis red cell membranes, in which the initial N-terminal 11 amino acids are deleted, enabled us to conclude that PRDX2 binds to the N-terminal cytoplasmic domain of B3 and that the first 11 amino acids of this domain are crucial for PRDX2 membrane association in intact RBCs. These findings imply yet another important role for B3 in regulating red cell membrane function
Recommended from our members
Racial Difference in Human Platelet PAR4 Reactivity Reflects Expression of PCTP and miR-376c
Racial differences in the pathophysiology of atherothrombosis are poorly understood. We explored the function and transcriptome of platelets in healthy black (n = 70) and white (n = 84) subjects. PAR4 thrombin receptor induced platelet aggregation and calcium mobilization were significantly greater in black subjects. Numerous differentially expressed (DE) RNAs were associated with both race and PAR4 reactivity, including phosphatidylcholine transfer protein (PCTP), and platelets from blacks expressed higher levels of PC-TP protein. PC-TP inhibition or depletion blocked activation of platelets or megakaryocytic cell lines through PAR4 but not PAR1. MiR-376c levels were DE by race and PAR4 reactivity, and were inversely correlated with PCTP mRNA levels, PC-TP protein levels and PAR4 reactivity. MiR-376c regulated expression of PC-TP in human megakaryocytes. A disproportionately high number of miRNAs DE by race and PAR4 reactivity, including miR-376c, are encoded in the DLK1-DIO3 locus, and were lower in platelets from blacks. These results support PC-TP as a regulator of the racial difference in PAR4-mediated platelet activation, indicate a genomic contribution to platelet function that differs by race, and emphasize a need to consider race effects when developing anti-thrombotic drugs
A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria
Artemisinins are the cornerstone of anti-malarial drugs. Emergence and spread of resistance to them raises risk of wiping out recent gains achieved in reducing worldwide malaria burden and threatens future malaria control and elimination on a global level. Genome-wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by the PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase, as well as its lipid product phosphatidylinositol-3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signalling in which transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination
- …
