660 research outputs found
Phenomenological Consequences of sub-leading Terms in See-Saw Formulas
Several aspects of next-to-leading (NLO) order corrections to see-saw
formulas are discussed and phenomenologically relevant situations are
identified. We generalize the formalism to calculate the NLO terms developed
for the type I see-saw to variants like the inverse, double or linear see-saw,
i.e., to cases in which more than two mass scales are present. In the standard
type I case with very heavy fermion singlets the sub-leading terms are
negligible. However, effects in the percent regime are possible when
sub-matrices of the complete neutral fermion mass matrix obey a moderate
hierarchy, e.g. weak scale and TeV scale. Examples are cancellations of large
terms leading to small neutrino masses, or inverse see-saw scenarios. We
furthermore identify situations in which no NLO corrections to certain
observables arise, namely for mu-tau symmetry and cases with a vanishing
neutrino mass. Finally, we emphasize that the unavoidable unitarity violation
in see-saw scenarios with extra fermions can be calculated with the formalism
in a straightforward manner.Comment: 22 pages, matches published versio
Flavour Physics and CP Violation in the Standard Model and Beyond
We present the invited lectures given at the Third IDPASC School which took
place in Santiago de Compostela in January 2013. The students attending the
school had very different backgrounds, some of them were doing their Ph.D. in
experimental particle physics, others in theory. As a result, and in order to
make the lectures useful for most of the students, we focused on basic topics
of broad interest, avoiding the more technical aspects of Flavour Physics and
CP Violation. We make a brief review of the Standard Model, paying special
attention to the generation of fermion masses and mixing, as well as to CP
violation. We describe some of the simplest extensions of the SM, emphasising
novel flavour aspects which arise in their framework.Comment: Invited talk at the Third IDPASC School 2013, January 21st - February
2nd 2013, Santiago de Compostela, Galiza, Spain; 36 pages, 8 figures, 2
tables; version with few misprints correcte
Minimal flavour violation extensions of the seesaw
We analyze the most natural formulations of the minimal lepton flavour
violation hypothesis compatible with a type-I seesaw structure with three heavy
singlet neutrinos N, and satisfying the requirement of being predictive, in the
sense that all LFV effects can be expressed in terms of low energy observables.
We find a new interesting realization based on the flavour group (being and respectively the SU(2) singlet and
doublet leptons). An intriguing feature of this realization is that, in the
normal hierarchy scenario for neutrino masses, it allows for sizeable
enhancements of transitions with respect to LFV processes involving
the lepton. We also discuss how the symmetries of the type-I seesaw
allow for a strong suppression of the N mass scale with respect to the scale of
lepton number breaking, without implying a similar suppression for possible
mechanisms of N productionComment: 14 pages, 6 figure
Leptogenesis in the presence of exact flavor symmetries
In models with flavor symmetries in the leptonic sector leptogenesis can take
place in a very different way compared to the standard leptogenesis scenario.
We study the generation of a asymmetry in these kind of models in the
flavor symmetric phase pointing out that successful leptogenesis requires (i)
the right-handed neutrinos to lie in different representations of the flavor
group; (ii) the flavons to be lighter at least that one of the right-handed
neutrino representations. When these conditions are satisfied leptogenesis
proceeds due to new contributions to the CP violating asymmetry and -depending
on the specific model- in several stages. We demonstrate the validity of these
arguments by studying in detail the generation of the asymmetry in a
scenario of a concrete flavor model realization.Comment: 25 pages, 7 figures; version 2: A few clarifications added. Version
matches publication in JHE
Probing top charged-Higgs production using top polarization at the Large Hadron Collider
We study single top production in association with a charged Higgs in the
type II two Higgs doublet model at the Large Hadron Collider. The polarization
of the top, reflected in the angular distributions of its decay products, can
be a sensitive probe of new physics in its production. We present theoretically
expected polarizations of the top for top charged-Higgs production, which is
significantly different from that in the closely related process of t-W
production in the Standard Model. We then show that an azimuthal symmetry,
constructed from the decay lepton angular distribution in the laboratory frame,
is a sensitive probe of top polarization and can be used to constrain
parameters involved in top charged-Higgs production.Comment: 22 pages, 18 Figures, Discussions about backgrounds and NLO
corrections added, figures modified, references added, Version published in
JHE
Neutrino physics at large colliders
Large colliders are not sensitive to light neutrino masses and character, but
they can produce new heavy neutrinos, allowing also for the determination of
their Dirac or Majorana nature. We review the discovery limits at the next
generation of large colliders.Comment: LaTeX 32 pages. This review summarises and extends work presented at
several conferences. To appear in the proceedings of CORFU2005. References
adde
Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory
The impact of heavy mediators on neutrino oscillations is typically described
by non-standard four-fermion interactions (NSIs) or non-unitarity (NU). We
focus on leptonic dimension-six effective operators which do not produce
charged lepton flavor violation. These operators lead to particular
correlations among neutrino production, propagation, and detection non-standard
effects. We point out that these NSIs and NU phenomenologically lead, in fact,
to very similar effects for a neutrino factory, for completely different
fundamental reasons. We discuss how the parameters and probabilities are
related in this case, and compare the sensitivities. We demonstrate that the
NSIs and NU can, in principle, be distinguished for large enough effects at the
example of non-standard effects in the --sector, which basically
corresponds to differentiating between scalars and fermions as heavy mediators
as leading order effect. However, we find that a near detector at superbeams
could provide very synergistic information, since the correlation between
source and matter NSIs is broken for hadronic neutrino production, while NU is
a fundamental effect present at any experiment.Comment: 32 pages, 5 figures. Final version published in JHEP. v3: Typo in Eq.
(27) correcte
Flavoured soft leptogenesis and natural values of the B term
We revisit flavour effects in soft leptogenesis relaxing the assumption of
universality for the soft supersymmetry breaking terms. We find that with
respect to the case in which the heavy sneutrinos decay with equal rates and
equal CP asymmetries for all lepton flavours, hierarchical flavour
configurations can enhance the efficiency by more than two orders of magnitude.
This translates in more than three order of magnitude with respect to the
one-flavour approximation. We verify that lepton flavour equilibration effects
related to off-diagonal soft slepton masses are ineffective for damping these
large enhancements. We show that soft leptogenesis can be successful for
unusual values of the relevant parameters, allowing for and for values of the washout parameter up to .Comment: 23 pages, 5 figures postscript, Minor changes to match the published
version in JHE
New physics searches at near detectors of neutrino oscillation experiments
We systematically investigate the prospects of testing new physics with tau
sensitive near detectors at neutrino oscillation facilities. For neutrino beams
from pion decay, from the decay of radiative ions, as well as from the decays
of muons in a storage ring at a neutrino factory, we discuss which effective
operators can lead to new physics effects. Furthermore, we discuss the present
bounds on such operators set by other experimental data currently available.
For operators with two leptons and two quarks we present the first complete
analysis including all relevant operators simultaneously and performing a
Markov Chain Monte Carlo fit to the data. We find that these effects can induce
tau neutrino appearance probabilities as large as O(10^{-4}), which are within
reach of forthcoming experiments. We highlight to which kind of new physics a
tau sensitive near detector would be most sensitive.Comment: 20 pages, 2 figures, REVTeX
Neutrinoless double beta decay in seesaw models
We study the general phenomenology of neutrinoless double beta decay in
seesaw models. In particular, we focus on the dependence of the neutrinoless
double beta decay rate on the mass of the extra states introduced to account
for the Majorana masses of light neutrinos. For this purpose, we compute the
nuclear matrix elements as functions of the mass of the mediating fermions and
estimate the associated uncertainties. We then discuss what can be inferred on
the seesaw model parameters in the different mass regimes and clarify how the
contribution of the light neutrinos should always be taken into account when
deriving bounds on the extra parameters. Conversely, the extra states can also
have a significant impact, cancelling the Standard Model neutrino contribution
for masses lighter than the nuclear scale and leading to vanishing neutrinoless
double beta decay amplitudes even if neutrinos are Majorana particles. We also
discuss how seesaw models could reconcile large rates of neutrinoless double
beta decay with more stringent cosmological bounds on neutrino masses.Comment: 34 pages, 5 eps figures and 1 axodraw figure. Final version published
in JHEP. NME results available in Appendi
- …
