3 research outputs found

    Measurement of the rapidity-even dipolar flow in Pb-Pb collisions with the ATLAS detector

    Full text link
    The rapidity-even dipolar flow v1 associated with dipole asymmetry in the initial geometry is measured over a broad range in transverse momentum 0.5 GeV<pT<9 GeV, and centrality (0-50)% in Pb-Pb collisions at sqrt(s_NN)=2.76 TeV, recorded by the ATLAS experiment at the LHC. The v1 coefficient is determined via a two-component fit of the first order Fourier coefficient, v_{1,1}= cos \Delta\phi, of two-particle correlations in azimuthal angle \Delta\phi=\phi_a-\phi_b as a function of pT^a and pT^b. This fit is motivated by the finding that the pT dependence of v_{1,1}(pT^a,pT^b) data are consistent with the combined contributions from a rapidity-even v1 and global momentum conservation. The magnitude of the extracted momentum conservation component suggests that the system conserving momentum involves only a subset of the event (spanning about 3 units in \eta in central collisions). The extracted v1 is observed to cross zero at pT~1.0 GeV, reaches a maximum at 4-5 GeV with a value comparable to that for v3, and decreases at higher pT. Interestingly, the magnitude of v1 at high pT exceeds the value of the v3 in all centrality interval and exceeds the value of v2 in central collisions. This behavior suggests that the path-length dependence of energy loss and initial dipole asymmetry from fluctuations corroborate to produce a large dipolar anisotropy for high pT hadrons, making the v1 a valuable probe for studying the jet quenching phenomena.Comment: 9 pages, 6 figures. Proceedings for the 28th Winter Workshop on Nuclear Dynamics, Dorado Del Mar, Puerto Rico, United States Of America, 7 - 14 Apr 201

    CMS Physics Technical Design Report, Volume II: Physics Performance

    No full text

    A facility to search for hidden particles at the CERN SPS: the SHiP physics case

    No full text
    corecore