3,170 research outputs found
Approximating Minimum Cost Connectivity Orientation and Augmentation
We investigate problems addressing combined connectivity augmentation and
orientations settings. We give a polynomial-time 6-approximation algorithm for
finding a minimum cost subgraph of an undirected graph that admits an
orientation covering a nonnegative crossing -supermodular demand function,
as defined by Frank. An important example is -edge-connectivity, a
common generalization of global and rooted edge-connectivity.
Our algorithm is based on a non-standard application of the iterative
rounding method. We observe that the standard linear program with cut
constraints is not amenable and use an alternative linear program with
partition and co-partition constraints instead. The proof requires a new type
of uncrossing technique on partitions and co-partitions.
We also consider the problem setting when the cost of an edge can be
different for the two possible orientations. The problem becomes substantially
more difficult already for the simpler requirement of -edge-connectivity.
Khanna, Naor, and Shepherd showed that the integrality gap of the natural
linear program is at most when and conjectured that it is constant
for all fixed . We disprove this conjecture by showing an
integrality gap even when
How good is the orthopaedic literature?
Randomized trials constitute approximately 3% of the orthopaedic literature Concerns regarding quality of the orthopaedic literature stem from a widespread notion that the overall quality of the surgical literature is in need of improvement. Limitations in surgical research arises primarily from two pervasive issues: 1) A reliance on low levels of evidence to advance surgical knowledge, and 2) Poor reporting quality among the high level surgical evidence that is available. The scarcity of randomized trials may be largely attributable to several unique challenges which make them difficult to conduct. We present characteristics of the orthopaedic literature and address the challenges of conducting randomized trials in surgery
Vortices in Superfluid Fermi Gases through the BEC to BCS Crossover
We have analyzed a single vortex at T=0 in a 3D superfluid atomic Fermi gas
across a Feshbach resonance. On the BCS side, the order parameter varies on two
scales: and the coherence length , while only variation on
the scale of is seen away from the BCS limit. The circulating current has
a peak value which is a non-monotonic function of
implying a maximum critical velocity at unitarity. The number of
fermionic bound states in the core decreases as we move from the BCS to BEC
regime. Remarkably, a bound state branch persists even on the BEC side
reflecting the composite nature of bosonic molecules.Comment: 4 Pages, 4 Figure
Human Capital Decisions and Employee Satisfaction at Selected Hotels in India
Understanding the role of human capital is one of the key considerations in delivering and sustaining competitiveness. Managing employees in the hospitality industry is particularly a challenging task as the industry is considered to be labor intensive. High turnover and increasing employee demands are among the problems that are identified as threats to maintaining a strong competitive position. Successful hotels attempt to retain their best employees in an effort to adapt to changing environments and increased competition. Effective hotel human resource systems can produce positive outcomes, through effective employee retention strategies that focus on work force motivation, attitudes and perception. The positive implementation of these strategies can influence and create employee satisfaction. This study aims to focus on the relationship between the mediating variables of motivation, attitudes, perception and their effect on employee satisfaction.
These findings are based upon an extensive survey carried out between April 2009 and June 2009 in the small mountainous state of Uttarakhand, located within the Indian sub-continent. Although the area of study is confined to the Kumaon region of Uttarakhand, the authors contend that the findings and implications can be applied to other remote developing tourist destinations in other regions
Viscosity of strongly interacting quantum fluids: spectral functions and sum rules
The viscosity of strongly interacting systems is a topic of great interest in
diverse fields.
We focus here on the bulk and shear viscosities of \emph{non-relativistic}
quantum fluids, with particular emphasis on strongly interacting ultracold
Fermi gases. We use Kubo formulas for the bulk and shear viscosity spectral
functions, and respectively, to derive exact,
non-perturbative results. Our results include: a microscopic connection between
the shear viscosity and the normal fluid density ; sum rules for
and and their evolution through the BCS-BEC
crossover; universal high-frequency tails for and the dynamic
structure factor . We use our sum rules to show that, at
unitarity, is identically zero and thus relate
to density-density correlations. We predict that frequency-dependent shear
viscosity of the unitary Fermi gas can be experimentally
measured using Bragg spectroscopy.Comment: Published versio
Discrepancy Without Partial Colorings
Spencer\u27s theorem asserts that, for any family of n subsets of ground set of size n, the elements of the ground set can be "colored" by the values +1 or -1 such that the sum of every set is O(sqrt(n)) in absolute value. All existing proofs of this result recursively construct "partial colorings", which assign +1 or -1 values to half of the ground set. We devise the first algorithm for Spencer\u27s theorem that directly computes a coloring, without recursively computing partial colorings
Nodal Quasiparticle Dispersion in Strongly Correlated d-wave Superconductors
We analyze the effects of a momentum-dependent self-energy on the
photoemission momentum distribution curve (MDC) lineshape, dispersion and
linewidth. We illustrate this general analysis by a detailed examination of
nodal quasiparticles in high Tc cuprates. We use variational results for the
nodal quasiparticle weight Z (which varies rapidly with hole doping x) and the
low energy Fermi velocity (which is independent of x), to show that
the high energy MDC dispersion , so that it is much
larger than the bare (band structure) velocity and also increases strongly with
underdoping. We also present arguments for why the low energy Fermi velocity
and the high energy dispersion are independent of the bare band structure at
small x. All of these results are in good agreement with earlier and recent
photoemission data [Zhou et al, Nature 423, 398 (2003)].Comment: 4 pages, 3 eps fig
- …
