2,017 research outputs found
Theory of spin-polarized scanning tunneling microscopy applied to local spins
We provide a theory for scanning tunneling microscopy and spectroscopy using
a spin-polarized tip. It it shown that the tunneling conductance can be
partitioned into three separate contributions, a background conductance which
is independent of the local spin, a dynamical conductance which is proportional
to the local spin moment, and a conductance which is proportional to the noise
spectrum of the local spin interactions. The presented theory is applicable to
setups with magnetic tip and substrate in non-collinear arrangement, as well as
for non-magnetic situations. The partitioning of the tunneling current suggests
a possibility to extract the total spin moment of the local spin from the
dynamical conductance. The dynamical conductance suggests a possibility to
generate very high frequency spin-dependent ac currents and/or voltages. We
also propose a measurement of the dynamical conductance that can be used to
determine the character of the effective exchange interaction between
individual spins in clusters. The third contribution to the tunneling current
is associated with the spin-spin correlations induced by the exchange
interaction between the local spin moment and the tunneling electrons. We
demonstrate how this term can be used in the analysis of spin excitations
recorded in conductance measurements. Finally, we propose to use spin-polarized
scanning tunneling microscopy for detailed studies of the spin excitation
spectrum.Comment: 12 pages, 4 figure, updated to match the published version, to appear
in the Phys. Rev.
The Effect of Flow at Maud Rise on the Sea Ice Cover - Numerical Experiments
The role of seamounts in the formation and evolution of sea ice isinvestigated in a series of numerical experiments with a coupled seaice-ocean model. Bottom topography, stratification and forcing areconfigured for the Maud Rise region in the Weddell Sea. The specificflow regime that develops at the seamount as the combined response tosteady and tidal forcing consists of free and trapped waves and aTaylor column, which is caused by mean flow and tidal flowrectification. The enhanced variability through tidal motion inparticular is capable of modifying the mixed layer above the seamountenough to delay and reduce sea ice formation throughout the winter.The induced sea ice anomaly spreads and moves westward and affects anarea of several 100~000 km. Process studies reveal the complexinteraction between wind, steady and periodic ocean currents: allthree are required in the process of generation of the sea ice andmixed layer anomalies (mainly through tidal flow), their detachmentfrom the topography (caused by steady oceanic flow), and the westwardtranslation of the sea ice anomaly (driven by the time-mean wind)
Magnetic properties of 3d-impurities substituted in GaAs
We have calculated the magnetic properties of substituted 3d-impurities
(Cr-Ni) in a GaAs host by means of first principles electronic structure
calculations. We provide a novel model explaining the ferromagnetic long rang
order of III-V dilute magnetic semiconductors. The origin of the ferromagnetism
is shown to be due to delocalized spin-uncompensated As dangling bond
electrons. Besides the quantitative prediction of the magnetic moments, our
model provides an understanding of the halfmetallicity, and the raise of the
critical temperature with the impurity concentration
Complex itinerant ferromagnetism in noncentrosymmetric Cr11Ge19
The noncentrosymmetric ferromagnet Cr11Ge19 has been investigated by
electrical transport, AC and DC magnetization, heat capacity, x-ray
diffraction, resonant ultrasound spectroscopy, and first principles electronic
structure calculations. Complex itinerant ferromagnetism in this material is
indicated by nonlinearity in conventional Arrott plots, unusual behavior of AC
susceptibility, and a weak heat capacity anomaly near the Curie temperature (88
K). The inclusion of spin wave excitations was found to be important in
modeling the low temperature heat capacity. The temperature dependence of the
elastic moduli and lattice constants, including negative thermal expansion
along the c axis at low temperatures, indicate strong magneto-elastic coupling
in this system. Calculations show strong evidence for itinerant ferromagnetism
and suggest a noncollinear ground state may be expected
Correlated metals and the LDA+U method
While LDA+U method is well established for strongly correlated materials with
well localized orbitals, its application to weakly correlated metals is
questionable. By extending the LDA Stoner approach onto LDA+U, we show that
LDA+U enhances the Stoner factor, while reducing the density of states.
Arguably the most important correlation effects in metals, fluctuation-induced
mass renormalization and suppression of the Stoner factor, are missing from
LDA+U. On the other hand, for {\it moderately} correlated metals LDA+U may be
useful. With this in mind, we derive a new version of LDA+U that is consistent
with the Hohenberg-Kohn theorem and can be formulated as a constrained density
functional theory. We illustrate all of the above on concrete examples,
including the controversial case of magnetism in FeAl.Comment: Substantial changes. In particular, examples of application of the
proposed functional are adde
Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity
Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs
Emergence of magnetism in graphene materials and nanostructures
Magnetic materials and nanostructures based on carbon offer unique
opportunities for future technological applications such as spintronics. This
article reviews graphene-derived systems in which magnetic correlations emerge
as a result of reduced dimensions, disorder and other possible scenarios. In
particular, zero-dimensional graphene nanofragments, one-dimensional graphene
nanoribbons, and defect-induced magnetism in graphene and graphite are covered.
Possible physical mechanisms of the emergence of magnetism in these systems are
illustrated with the help of computational examples based on simple model
Hamiltonians. In addition, this review covers spin transport properties,
proposed designs of graphene-based spintronic devices, magnetic ordering at
finite temperatures as well as the most recent experimental achievements.Comment: tutorial-style review article -- 18 pages, 19 figure
Thermodynamic Studies on Non Centrosymmetric Superconductors by AC Calorimetry under High Pressures
We investigated the non centrosymmetric superconductors CePtSi and UIr by
the ac heat capacity measurement under pressures. We determined the pressure
phase diagrams of these compounds. In CePtSi, the N\'{e}el temperature
= 2.2 K decreases with increasing pressure and becomes zero at the
critical pressure 0.6 GPa. On the other hand, the
superconducting phase exists in a wider pressure region from ambient pressure
to 1.5 GPa. The phase diagram of CePtSi is very
unique and has never been reported before for other heavy fermion
superconductors. In UIr, the heat capacity shows an anomaly at the Curie
temperature = 46 K at ambient pressure, and the heat capacity
anomaly shifts to lower temperatures with increasing pressure. The present
pressure dependence of was consistent with the previous studies by
the resistivity and magnetization measurements. Previous ac magnetic
susceptibility and resistivity measurements suggested the existence of three
ferromagnetic phases, FM1-3. shows a bending structure at 1.98,
2.21, and 2.40 GPa .The temperatures where these anomalies are observed are
close to the phase boundary of the FM3 phase.Comment: This paper was presented at the international workshop ``Novel
Pressure-induced Phenomena in Condensed Matter Systems(NP2CMS)" August 26-29
2006, Fukuoka Japa
Electronic structure and magnetism of equiatomic FeN
In order to investigate the phase stability of equiatomic FeN compounds and
the structure-dependent magnetic properties, the electronic structure and total
energy of FeN with NaCl, ZnS and CsCl structures and various magnetic
configurations are calculated using the first-principles TB-LMTO-ASA method.
Among all the FeN phases considered, the antiferromagnetic NaCl structure with
q=(00pi) is found to have the lowest energy at the theoretical equilibrium
volume. However, the FM NaCl phase lies only 1mRyd higher. The estimated
equilibrium lattice constant for nonmagnetic ZnS-type FeN agrees quite well
with the experimental value, but for the AFM NaCl phase the estimated value is
6.7% smaller than that observed experimentally. For ZnS-type FeN, metastable
magnetic states are found for volumes larger than the equilibrium value. On the
basis of an analysis of the atom- and orbital-projected density of states and
orbital-projected Crystal Orbital Hamilton Population, the iron-nitrogen
interactions in NM ZnS, AFM NaCl and FM CsCl structures are discussed. The
leading Fe-N interactions is due to the d-p iron-nitrogen hybridization, while
considerable s-p and p-p hybridizations are also observed in all three phases.
The iron magnetic moment in FeN is found to be highly sensitive to the
nearest-neighboring Fe-N distance. In particular, the magnetic moment shows an
abrupt drop from a value of about 2 muB to zero with the reduction of the Fe-N
distance for the ZnS and CsCl structures.Comment: 12 pages, 6 figure
Performance of a 229 Thorium solid-state nuclear clock
The 7.8 eV nuclear isomer transition in 229 Thorium has been suggested as an
etalon transition in a new type of optical frequency standard. Here we discuss
the construction of a "solid-state nuclear clock" from Thorium nuclei implanted
into single crystals transparent in the vacuum ultraviolet range. We
investigate crystal-induced line shifts and broadening effects for the specific
system of Calcium fluoride. At liquid Nitrogen temperatures, the clock
performance will be limited by decoherence due to magnetic coupling of the
Thorium nucleus to neighboring nuclear moments, ruling out the commonly used
Rabi or Ramsey interrogation schemes. We propose a clock stabilization based on
counting of flourescence photons and present optimized operation parameters.
Taking advantage of the high number of quantum oscillators under continuous
interrogation, a fractional instability level of 10^{-19} might be reached
within the solid-state approach.Comment: 28 pages, 9 figure
- …
