9 research outputs found

    Metabolite Profiles of the Serum of Patients with Non–Small Cell Carcinoma

    Get PDF
    AbstractIntroductionAlterations of serum metabolites may allow us to identify individuals with lung cancer and advance our understanding of the nature and treatment of their cancer. We aimed to identify serum metabolites that differentiate patients with lung cancer from at-risk controls.MethodsSerum samples from patients with biopsy-confirmed untreated stage I through stage III non–small cell lung cancer and at-risk controls were divided into fractions for analysis by ultrahigh-performance liquid chromatography–tandem mass spectrometry and gas chromatography–mass spectrometry. Compounds were identified by comparison with library entries of purified standards. Differences in concentrations of single metabolites and metabolite ratios were identified. Prediction models were developed.ResultsSerum samples from 284 subjects was analyzed. The subjects' mean age was 67 and 48% were female. Ninety-four patients had lung cancer (50 had adenocarcinoma and 44 had squamous cell carcinoma), 44% had stage I disease, 17% had stage II disease, and 39% had stage III disease. The patients with cancer were slightly older than the controls (68.7 versus 66.2 years, p = 0.013). A total of 534 metabolites were identified in eight metabolite superpathways and 73 subpathways. The concentrations of 149 metabolites differed significantly (q values <0.05) between the cancer and control groups (70 were lower in the cancer group and 79 were higher), and 9723 metabolite ratios differed significantly (q values <0.001) between the cancer and control groups. The accuracies of the models (cancer and cancer subtypes versus control) trained on 70% of the subjects and tested on 30% (expressed as C-statistics) ranged from 0.748 to 0.858.ConclusionsDifferences in the serum metabolite profile exist between patients with stage I through stage III non–small cell lung cancer and matched controls

    Biomarkers for Type 2 Diabetes and Impaired Fasting Glucose Using a Nontargeted Metabolomics Approach

    No full text
    Using a nontargeted metabolomics approach of 447 fasting plasma metabolites, we searched for novel molecular markers that arise before and after hyperglycemia in a large population-based cohort of 2,204 females (115 type 2 diabetic [T2D] case subjects, 192 individuals with impaired fasting glucose [IFG], and 1,897 control subjects) from TwinsUK. Forty-two metabolites from three major fuel sources (carbohydrates, lipids, and proteins) were found to significantly correlate with T2D after adjusting for multiple testing; of these, 22 were previously reported as associated with T2D or insulin resistance. Fourteen metabolites were found to be associated with IFG. Among the metabolites identified, the branched-chain keto-acid metabolite 3-methyl-2-oxovalerate was the strongest predictive biomarker for IFG after glucose (odds ratio [OR] 1.65 [95% CI 1.39–1.95], P = 8.46 × 10−9) and was moderately heritable (h2 = 0.20). The association was replicated in an independent population (n = 720, OR 1.68 [ 1.34–2.11], P = 6.52 × 10−6) and validated in 189 twins with urine metabolomics taken at the same time as plasma (OR 1.87 [1.27–2.75], P = 1 × 10−3). Results confirm an important role for catabolism of branched-chain amino acids in T2D and IFG. In conclusion, this T2D-IFG biomarker study has surveyed the broadest panel of nontargeted metabolites to date, revealing both novel and known associated metabolites and providing potential novel targets for clinical prediction and a deeper understanding of causal mechanisms.</jats:p
    corecore