15,609 research outputs found
Broken Promises: The Case of Mothers of Srebrenica vs. The State of the Netherlands
Critical discourse analysis of the legal proceedings of the Mothers of Srebrenica case brought against the UN and the Dutch government. This analysis explores the nature of culpability and blame-making among international actors
Total reaction cross sections from 141Pr(,)Pr elastic scattering and -induced reaction cross sections at low energies
Elastic scattering data for Pr(,)Pr have been
analyzed to derive a new energy-dependent local potential for the
Pr- system. This potential is used successfully to predict the
cross section of the Pr(,n)Pm reaction at low energies
where new experimental data have become available very recently. Contrary to
various global potentials, this new potential is able to reproduce
simultaneously elastic scattering data around and above the Coulomb barrier and
reaction data below the Coulomb barrier for the Pr- system.
Reasons for the partial failure of the global potentials are explained by
intrinsic properties of the scattering matrix and their variation with energy.
The new local potential may become the basis for the construction of a new
global -nucleus potential.Comment: 12 pages, 8 figures, Phys. Rev. C, accepte
The Effects of Clumping and Substructure on ICM Mass Measurements
We examine an ensemble of 48 simulated clusters to determine the effects of
small-scale density fluctuations and large-scale substructure on X-ray
measurements of the intracluster medium (ICM) mass. We measure RMS density
fluctuations in the ICM which can be characterized by a mean mass-weighted
clumping factor C = /^2 between 1.3 and 1.4 within a density
contrast of 500 times the critical density. These fluctuations arise from the
cluster history of accretion shocks and major mergers, and their presence
enhances the cluster's luminosity relative to the smooth case. We expect,
therefore, that ICM mass measurements utilizing models which assume uniform
density at a given radius carry a bias of order sqrt(C) = 1.16. We verify this
result by performing ICM mass measurements on X-ray images of the simulations
and finding the expected level of bias.
The varied cluster morphologies in our ensemble also allow us to investigate
the effects of departures from spherical symmetry on our measurements. We find
that the presence of large-scale substructure does not further bias the
resulting gas mass unless it is pronounced enough to produce a second peak in
the image of at least 1% the maximum surface brightness. We analyze the subset
of images with no secondary peaks and find a bias of 9% and a Gaussian random
error of 4% in the derived mass.Comment: To appear in ApJ
Improving the Quality and Efficiency of the Medicare Program Through Coverage Policy
Outlines Medicare coverage and payment policy on new technologies and recommends changes that could help achieve the Triple Aim goals of enhancing the individual experience of care, improving population health, and reducing per capita costs of care
Fragment Approach to Constrained Density Functional Theory Calculations using Daubechies Wavelets
In a recent paper we presented a linear scaling Kohn-Sham density functional
theory (DFT) code based on Daubechies wavelets, where a minimal set of
localized support functions is optimized in situ and therefore adapted to the
chemical properties of the molecular system. Thanks to the systematically
controllable accuracy of the underlying basis set, this approach is able to
provide an optimal contracted basis for a given system: accuracies for ground
state energies and atomic forces are of the same quality as an uncontracted,
cubic scaling approach. This basis set offers, by construction, a natural
subset where the density matrix of the system can be projected. In this paper
we demonstrate the flexibility of this minimal basis formalism in providing a
basis set that can be reused as-is, i.e. without reoptimization, for
charge-constrained DFT calculations within a fragment approach. Support
functions, represented in the underlying wavelet grid, of the template
fragments are roto-translated with high numerical precision to the required
positions and used as projectors for the charge weight function. We demonstrate
the interest of this approach to express highly precise and efficient
calculations for preparing diabatic states and for the computational setup of
systems in complex environments
Lamb Shift of 3P and 4P states and the determination of
The fine structure interval of P states in hydrogenlike systems can be
determined theoretically with high precision, because the energy levels of P
states are only slightly influenced by the structure of the nucleus. Therefore
a measurement of the fine structure may serve as an excellent test of QED in
bound systems or alternatively as a means of determining the fine structure
constant with very high precision. In this paper an improved analytic
calculation of higher-order binding corrections to the one-loop self energy of
3P and 4P states in hydrogen-like systems with low nuclear charge number is
presented. A comparison of the analytic results to the extrapolated numerical
data for high ions serves as an independent test of the analytic
evaluation. New theoretical values for the Lamb shift of the P states and for
the fine structure splittings are given.Comment: 33 pages, LaTeX, 4 tables, 4 figure
QED self-energy contribution to highly-excited atomic states
We present numerical values for the self-energy shifts predicted by QED
(Quantum Electrodynamics) for hydrogenlike ions (nuclear charge ) with an electron in an , 4 or 5 level with high angular momentum
(). Applications include predictions of precision transition
energies and studies of the outer-shell structure of atoms and ions.Comment: 20 pages, 5 figure
Two-Loop Bethe Logarithms
We calculate the two-loop Bethe logarithm correction to atomic energy levels
in hydrogen-like systems. The two-loop Bethe logarithm is a low-energy quantum
electrodynamic (QED) effect involving multiple summations over virtual excited
atomic states. Although much smaller in absolute magnitude than the well-known
one-loop Bethe logarithm, the two-loop analog is quite significant when
compared to the current experimental accuracy of the 1S-2S transition: it
contributes -8.19 and -0.84 kHz for the 1S and the 2S state, respectively. The
two-loop Bethe logarithm has been the largest unknown correction to the
hydrogen Lamb shift to date. Together with the ongoing measurement of the
proton charge radius at the Paul Scherrer Institute its calculation will bring
theoretical and experimental accuracy for the Lamb shift in atomic hydrogen to
the level of 10^(-7).Comment: 4 pages, RevTe
- …
