1,623 research outputs found
Dynamics of coherent structures in a plane mixing layer
An incompressible, time developing 3-D mixing layer with idealized initial conditions was simulated numerically. Consistent with the suggestions from experimental measurements, the braid region between the dominant spanwise vortices or rolls develops longitudinal vortices or ribs, which are aligned upstream and downstream of a roll and produce spanwise distortion of the rolls. The process by which this distortion occurs is explained by studying a variety of quantities of dynamic importance (e.g., production of enstrophy, vortex stretching). Other quantities of interest (dissipation, helicity density) are also computed and discussed. The currently available simulation only allows the study of the early evolution (before pairing) of the mixing layer. New simulations in progress will relieve this restriction
Psychometric Properties of the Altarum Consumer Engagement (ACE) Measure of Activation in Patients with Prediabetes.
BackgroundPatient activation is associated with better outcomes in chronic conditions.ObjectiveWe evaluated the psychometric properties of the 12-item Altarum Consumer Engagement™ Measure (ACE-12) in patients with prediabetes.ParticipantsACE-12 was administered to patients in the Prediabetes Informed Decisions and Education Study.Main measuresWe conducted an exploratory factor analysis followed by confirmatory factor analytic models. We evaluated item response categories using item characteristic curves. Construct validity was assessed by examining correlations of the ACE-12 scales with education, depressive symptoms, self-rated health, hemoglobin A1c, body mass index, and weight loss.Key resultsParticipants (n = 515) had a median age of 58; 56% were female; 17% Hispanic; 54% were non-White. The scree plot and Tucker and Lewis reliability coefficient (0.95) suggested three factors similar to the original scales. One item loaded on the navigation rather than the informed choice scale. Ordinal alpha coefficients for the original scales were commitment (0.75); informed choice (0.71); and navigation (0.54). ICCs indicated that one or more of the response categories for 5 of the 12 items were never most likely to be selected. Patients with lower education were less activated on the commitment (r = - 0.124, p = 0.004), choice (r = - 0.085, p = 0.009), and overall score (r = - 0.042, p = 0.011). Patients with depressive symptoms had lower commitment (r = - 0.313, p ≤ 0.001) and overall scores (r = - 0.172, p = 0.012). Patients with poorer health scored lower on the Commitment (r = - 0.308, p ≤ 0.001), Navigation (r = - 0.137, p ≤ 0.001), and overall score (r = - 0.279, p ≤ 0.001).ConclusionThe analyses provide some support for the psychometric properties of the ACE-12 in prediabetic patients. Future research evaluating this tool among patients with other chronic conditions are needed to determine whether Q1 (I spend a lot of time learning about health) should remain in the informed choice or be included in the navigation scale. Additional items may be needed to yield acceptable reliability for the navigation scale
An EMG Gesture Recognition System with Flexible High-Density Sensors and Brain-Inspired High-Dimensional Classifier
EMG-based gesture recognition shows promise for human-machine interaction.
Systems are often afflicted by signal and electrode variability which degrades
performance over time. We present an end-to-end system combating this
variability using a large-area, high-density sensor array and a robust
classification algorithm. EMG electrodes are fabricated on a flexible substrate
and interfaced to a custom wireless device for 64-channel signal acquisition
and streaming. We use brain-inspired high-dimensional (HD) computing for
processing EMG features in one-shot learning. The HD algorithm is tolerant to
noise and electrode misplacement and can quickly learn from few gestures
without gradient descent or back-propagation. We achieve an average
classification accuracy of 96.64% for five gestures, with only 7% degradation
when training and testing across different days. Our system maintains this
accuracy when trained with only three trials of gestures; it also demonstrates
comparable accuracy with the state-of-the-art when trained with one trial
Two-qubit parametric amplifier: large amplification of weak signals
Using numerical simulations, we show that two coupled qubits can amplify a
weak signal about hundredfold. This can be achieved if the two qubits are
biased simultaneously by this weak signal and a strong pump signal, both of
which having frequencies close to the inter-level transitions in the system.
The weak signal strongly affects the spectrum generated by the strong pumping
drive by producing and controlling mixed harmonics with amplitudes of the order
of the main harmonic of the strong drive. We show that the amplification is
robust with respect to noise, with an intensity of the order of the weak
signal. When deviating from the optimal regime (corresponding to strong qubit
coupling and a weak-signal frequency equal to the inter-level transition
frequency) the proposed amplifier becomes less efficient, but it can still
considerably enhance a weak signal (by several tens). We therefore propose to
use coupled qubits as a combined parametric amplifier and frequency shifter.Comment: 6 figure
Implementation and evaluation of the VA DPP clinical demonstration: protocol for a multi-site non-randomized hybrid effectiveness-implementation type III trial.
BackgroundThe Diabetes Prevention Program (DPP) study showed that lifestyle intervention resulted in a 58% reduction in incidence of type 2 diabetes among individuals with prediabetes. Additional large randomized controlled trials have confirmed these results, and long-term follow-up has shown sustained benefit 10-20 years after the interventions ended. Diabetes is a common and costly disease, especially among Veterans, and despite strong evidence supporting the feasibility of type 2 diabetes prevention, the DPP has not been widely implemented. The first aim of this study will evaluate implementation of the Veterans Affairs (VA) DPP in three VA medical centers. The second aim will assess weight and hemoglobin A1c (A1c) outcomes, and the third aim will determine the cost-effectiveness and budget impact of implementation of the VA DPP from a health system perspective.Methods/designThis partnered multi-site non-randomized systematic assignment study will use a highly pragmatic hybrid effectiveness-implementation type III mixed methods study design. The implementation and administration of the VA DPP will be funded by clinical operations while the evaluation of the VA DPP will be funded by research grants. Seven hundred twenty eligible Veterans will be systematically assigned to the VA DPP clinical demonstration or the usual care VA MOVE!® weight management program. A multi-phase formative evaluation of the VA DPP implementation will be conducted. A theoretical program change model will be used to guide the implementation process and assess applicability and feasibility of the DPP for VA. The Consolidated Framework for Implementation Research (CFIR) will be used to guide qualitative data collection, analysis, and interpretation of barriers and facilitators to implementation. The RE-AIM framework will be used to assess Reach, Effectiveness, Adoption, Implementation, and Maintenance of the VA DPP. Twelve-month weight and A1c change will be evaluated for the VA DPP compared to the VA MOVE!ProgramMediation analyses will be conducted to identify whether program design differences impact outcomes.DiscussionFindings from this pragmatic evaluation will be highly applicable to practitioners who are tasked with implementing the DPP in clinical settings. In addition, findings will determine the effectiveness and cost-effectiveness of the VA DPP in the Veteran population
Intranasal administration of RSV antigen-expressing MCMV elicits robust tissue-resident effector and effector memory CD8+ T cells in the lung
Cytomegalovirus vectors are promising delivery vehicles for vaccine strategies that aim to elicit effector CD8+ T cells. To determine how the route of immunization affects CD8+ T cell responses in the lungs of mice vaccinated with a murine cytomegalovirus vector expressing the respiratory syncytial virus matrix (M) protein, we infected CB6F1 mice via the intranasal or intraperitoneal route and evaluated the M-specific CD8+ T cell response at early and late time points. We found that intranasal vaccination generated robust and durable tissue-resident effector and effector memory CD8+ T cell populations that were undetectable after intraperitoneal vaccination. The generation of these antigen-experienced cells by intranasal vaccination resulted in earlier T cell responses, interferon gamma secretion, and viral clearance after respiratory syncytial virus challenge. Collectively, these findings validate a novel approach to vaccination that emphasizes the route of delivery as a key determinant of immune priming at the site of vulnerability
Doc2b Protects β-Cells Against Inflammatory Damage and Enhances Function
Loss of functional β-cell mass is an early feature of type 1 diabetes. To release insulin, β-cells require soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes, as well as SNARE complex regulatory proteins like double C2 domain-containing protein β (Doc2b). We hypothesized that Doc2b deficiency or overabundance may confer susceptibility or protection, respectively, to the functional β-cell mass. Indeed, Doc2b+/- knockout mice show an unusually severe response to multiple-low-dose streptozotocin (MLD-STZ), resulting in more apoptotic β-cells and a smaller β-cell mass. In addition, inducible β-cell-specific Doc2b-overexpressing transgenic (βDoc2b-dTg) mice show improved glucose tolerance and resist MLD-STZ-induced disruption of glucose tolerance, fasting hyperglycemia, β-cell apoptosis, and loss of β-cell mass. Mechanistically, Doc2b enrichment enhances glucose-stimulated insulin secretion (GSIS) and SNARE activation and prevents the appearance of apoptotic markers in response to cytokine stress and thapsigargin. Furthermore, expression of a peptide containing the Doc2b tandem C2A and C2B domains is sufficient to confer the beneficial effects of Doc2b enrichment on GSIS, SNARE activation, and apoptosis. These studies demonstrate that Doc2b enrichment in the β-cell protects against diabetogenic and proapoptotic stress. Furthermore, they identify a Doc2b peptide that confers the beneficial effects of Doc2b and may be a therapeutic candidate for protecting functional β-cell mass
- …
