2,711 research outputs found

    All-optical photon echo and memory on a chip

    Full text link
    We demonstrate that a photon echo can be implemented by all-optical means using an array of on-chip high-finesse ring cavities whose parameters are chirped in such a way as to support equidistant spectra of cavity modes. When launched into such a system, a classical or quantum optical signal -- even a single-photon field -- becomes distributed between individual cavities, giving rise to prominent coherence echo revivals at well-defined delay times, controlled by the chirp of cavity parameters. This effect enables long storage times for high-throughput broadband optical delay and quantum memory.Comment: 7 pages, 5 figure

    Photon echo quantum memory with complete use of natural inhomogeneous broadening

    Get PDF
    The photon echo quantum memory is based on a controlled rephasing of the atomic coherence excited by signal light field in the inhomogeneously broadened resonant line. Here, we propose a novel active mechanism of the atomic rephasing which provides a perfect retrieval of the stored light field in the photon echo quantum memory for arbitrary initial inhomogeneous broadening of the resonant line. It is shown that the rephasing mechanism can exploit all resonant atoms which maximally increases an optical depth of the resonant transition that is one of the critical parameters for realization of highly efficient quantum memory. We also demonstrate that the rephasing mechanism can be used for various realizations of the photon echo quantum memory that opens a wide road for its practical realization.Comment: 6 pages, 4 figure
    corecore