19 research outputs found
Peritoneal changes due to laparoscopic surgery
Item does not contain fulltextBACKGROUND: Laparoscopic surgery has been incorporated into common surgical practice. The peritoneum is an organ with various biologic functions that may be affected in different ways by laparoscopic and open techniques. Clinically, these alterations may be important in issues such as peritoneal metastasis and adhesion formation. METHODS: A literature search using the Pubmed and Cochrane databases identified articles focusing on the key issues of laparoscopy, peritoneum, inflammation, morphology, immunology, and fibrinolysis. Results : Laparoscopic surgery induces alterations in the peritoneal integrity and causes local acidosis, probably due to peritoneal hypoxia. The local immune system and inflammation are modulated by a pneumoperitoneum. Additionally, the peritoneal plasmin system is inhibited, leading to peritoneal hypofibrinolysis. CONCLUSION: Similar to open surgery, laparoscopic surgery affects both the integrity and biology of the peritoneum. These observations may have implications for various clinical conditions.1 januari 201
Postoperative abdominal adhesions and their prevention in gynaecological surgery. Expert consensus position
The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants
Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree, coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for the control of agricultural plant disease. © 2014 Porcel et al
Intraabdominal adhesion formation is associated with differential mRNA expression of metabolic genes PDHb and SDHa
Unearthing belowground bud banks in fire-prone ecosystems
© 2018 New Phytologist Trust. Despite long-time awareness of the importance of the location of buds in plant biology, research on belowground bud banks has been scant. Terms such as lignotuber, xylopodium and sobole, all referring to belowground bud-bearing structures, are used inconsistently in the literature. Because soil efficiently insulates meristems from the heat of fire, concealing buds below ground provides fitness benefits in fire-prone ecosystems. Thus, in these ecosystems, there is a remarkable diversity of bud-bearing structures. There are at least six locations where belowground buds are stored: roots, root crown, rhizomes, woody burls, fleshy swellings and belowground caudexes. These support many morphologically distinct organs. Given their history and function, these organs may be divided into three groups: those that originated in the early history of plants and that currently are widespread (bud-bearing roots and root crowns); those that also originated early and have spread mainly among ferns and monocots (nonwoody rhizomes and a wide range of fleshy underground swellings); and those that originated later in history and are strictly tied to fire-prone ecosystems (woody rhizomes, lignotubers and xylopodia). Recognizing the diversity of belowground bud banks is the starting point for understanding the many evolutionary pathways available for responding to severe recurrent disturbances
Lignotubers in Mediterranean basin plants
Lignotubers are swollen woody structures located at the root-shoot transition zone and contain numerous dormant buds and starch reserves. This structure enables the plant to resprout prolifically after severe disturbances that remove the aboveground biomass. These are considered adaptive traits in ecosystems with highly frequent and severe disturbances—such as fire-prone ecosystems. In this paper, we aim to contribute to the knowledge of lignotubers in the Mediterranean basin and highlight the evolutionary implications. We first summarise existing knowledge on lignotuber species in the Mediterranean basin. We then provide a detailed morpho-anatomical description of early lignotubers in two common woody species (Arbutus unedo L. and Phillyrea angustifolia L.). Finally, we compare our anatomical results with those obtained in studies conducted with other lignotuberous species from different Mediterranean regions. Lignotubers were verified in 14 species in the Mediterranean basin; all being from lineages with origins dating to the Tertiary and thus pre-dating the Mediterranean climate. In A. unedo and P. angustifolia, lignotubers are macroscopically discernible in 4- and 2-year-old saplings, respectively. In these two species, the lignotubers have numerous buds protected by hypertrophied scales, and have a contorted xylem containing abundant starch. Our results challenge the traditional idea that pre-Mediterranean lineages suffered evolutionary inertia; instead, lignotuberous species may be considered examples of plants that adapted to the increased fire activity that occurred throughout the Tertiary and Quaternary. We also highlight the use of morpho-anatomical traits to unambiguously distinguish between lignotuberous and non-lignotuberous resprouting species.This work has been funded by the ‘Fondo Nacional de Desarrollo Científico’ from the Chilean government (FONDECYT 1120458), the ‘Consejo Superior de Investigaciones Científicas’ (CSIC, Spain; i-LINK + 2012 n°0556) and the TREVOL project (CGL2012-39938-C02-00) from the Spanish government. PIN is funded by ‘U-inicia 2014 Naulin PI’.Peer Reviewe
